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We investigated the phase diagram of SU(3) gauge theory in four dimension with one compact

dimension by using the perturbative one-loop effective potential. Effects of the adjoint and funda-

mental fermions are investigated and then the rich phase structure in the quark-mass and compact-

size scale is realized. Our results are qualitatively consistent with the recent lattice calculation and

clearly show that the lattice calculation can be understood from the Hosotani mechanism. More-

over, we show the result obtained by using the flavor twisted boundary condition for fundamental

fermion which does not break the Z3 symmetry, explicitly.
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1. Introduction

The Higgs-like particle has been discovered recently in Large Hadron Collider (LHC) [1, 2].

The one of primary interests of particle physics is to understand the mechanism of dynamical

electroweak symmetry breaking. The one of the promising mechanism to explain the Higgs particle

is the Hosotani mechanism [3, 4] which leads the gauge-Higgs unification.

In the Hosotani mechanism, the Higgs particle is interpreted as the fluctuation of the extra-

dimensional component of the gauge field when the adjoint fermions are introduced with a periodic

boundary condition (PBC) because the non-zero vacuum expectation value (VEV) of the extra-

dimensional component of gauge field is realized.

Recently, same phenomena has been observed in a different context ; for example, see Ref. [5,

6, 7]. When the adjoint fermions with PBC are introduced to Quantum Chromodynamic (QCD) at

finite temperature, some exotic phases are appeared. In such exotic phase, the traced fundamen-

tal Polyakov-loop Φ can have the non-trivial value and it show the spontaneous gauge-symmetry

breaking. It means the realization of the Hosotani mechanism in R3×S1 space-time as shown later.

Furthermore, we consider the flavor twisted boundary condition (FTBC) for fundamental

fermions. This FTBC is considered in Ref. [8, 9] to investigate correlations between the Z3 and

chiral symmetries breaking because the Z3 symmetry is not explicitly broken in the case with FTBC

even if we introduce the fundamental fermions. In the standard fundamental fermion can not leads

the spontaneous gauge symmetry breaking, but fundamental fermions with FTBC can lead the

breaking as shown later.

The purpose of this talk is to explain how to understand the recent lattice simulation from the

Hosotani mechanism and possibility of the spontaneous gauge symmetry breaking by the funda-

mental fermions. This talk is based on papers [10, 11]

2. Formalism

In this study, we use the perturbative one-loop effective potential [12, 13] on R3×S1 for gauge

boson and fermions and then the imaginary time direction is the compacted dimension.

Firstly, we expand the SU(N) gauge boson field as

Aµ = 〈Ay〉+ Ãµ , (2.1)

where y stands for a compact direction, 〈Ay〉 is VEV and Ãµ express the fluctuation part. For latter

convenience, we rewrite it as

〈Ay〉=
2π

gL
q, (2.2)

where g is gauge coupling constant and q’s color structure is diag(q1,q2, ...,qN) and each compo-

nent should be (qi)mod 1. We note that eigenvalues of qi are invariant under all gauge transforma-

tions preserving boundary conditions and thus we can easily observe spontaneous gauge symmetry

breaking from values of qi.

The gluon one-loop effective potential Vg can be expressed as

Vg =−
2

L4π2

N

∑
i, j=1

∞

∑
n=1

(

1−
1

N
δi j

)cos(2nπqi j)

n4
(2.3)
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where qi j = (qi −q j)mod 1 and N means the number of color degrees of freedom. The perturbative

one-loop effective potential for the massive fundamental quark is expressed by using the second

kind of the modified Bessel function K2(x) as

V
φ
f (N f ,m f ) =

2N f m
2
f

π2L2

N

∑
i=1

∞

∑
n=1

K2(nm f L)

n2
cos[2πn(qi +φ)], (2.4)

where N f and m f are the number of flavors and the mass for fundamental fermions. The perturba-

tive one-loop effective potential for the massive adjoint quark V
φ

a is

V
φ

a (Na,ma) =
2Nam2

a

π2L2

N

∑
i, j=1

∞

∑
n=1

(

1−
1

N
δi j

)K2(nmaL)

n2
cos[2πn(qi j +φ)], (2.5)

where Na and ma are the number of flavors and the mass for adjoint fermions.

For the gauge theory with N f fundamental and Na adjoint fermions with arbitrary boundary

conditions, the total perturbative one-loop effective potential becomes

V = Vg +V
φ
f (N f ,m f )+V

φ
a (Na,ma). (2.6)

This total one-loop effective potential contains eight parameters including the compact scale L, the

number of colors N, the fermion masses m f , ma, the number of flavors N f , Na, and the boundary

conditions φ for two kinds of matter fields. In this study, we keep N = 3 and then the phase diagram

is obtained in 1/L-ma space with fixed m f , N f , Na and φ . The reason we change ma while fixing

m f is that gauge symmetry phase diagram is more sensitive to the former than the latter.

3. SU(3) gauge theory with adjoint and fundamental quarks [10]

Here, we consider the case of (N f ,Na) = (0,1) with PBC. We note that this case has exact Z3

symmetry because the adjoint quark does not break the symmetry. Figure 1 shows the effective

potential [Vg +V 0
a (Na,ma)]L

4 as a function of q1 with q2 = 0 for mL = 1.2, 1.6, 2.0 and 3.0 from

left to right panels (m ≡ ma). We can clearly see that there is the first-order phase transition in the
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Figure 1: The one-loop effective potential of SU(3) gauge theory with one flavor PBC adjoint quark as a

function of q1 with q2 = 0 for mL = 1.2 (reconfined) 1.6 (reconfined↔split), 2.0 (split↔deconfined) and 3.0

(deconfined).

vicinity of mL = 1.6. This is a transition between the reconfined phase and the other gauge-broken

phase, which we call the split phase.

In Fig. 2, we show the phase diagram in L−1-m plane with (N f ,Na) = (0,1) quark based on

the perturbative one-loop effective potential. We note that, as m appears as mL in the potential,
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Figure 2: L−1-m phase diagram for SU(3) gauge theory on R3 × S1 with one PBC adjoint quark based on

one-loop effective potential. The symbol D stands for deconfined (SU(3)), S for split (SU(2)×U(1)) and R

for reconfined (U(1)×U(1)) phases.

we have liner scaling in the phase diagram. Since we drop the non-perturbative effect in the gluon

potential, we can not obtain the confined phase at small L−1. The order of three phases in Fig. 2

(deconfined SU(3) → split SU(2)×U(1) → reconfined U(1)×U(1) from small to large L−1) is

consistent with that of the lattice simulation [6, 7] except the confined phase. All the critical lines

in the figure are first-order. In Fig. 3 we show a schematic distribution plot of Φ in the complex

plane for each phases. In the split phase, Φ has nonzero values but in a different manner from the

deconfined phase. In the reconfined phase, we have Φ = 0 with the vacuum which breaks the gauge

symmetry.

ReΦ

Im Φ

Figure 3: Schematic distribution plot of Polyakov loop Φ as a function of Re Φ and Im Φ for SU(3) gauge

theory with one flavor PBC adjoint quark.

From above results, we can understand the lattice results [6] from Hosotani mechanism as

4
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shown in Fig 4.

SU(3) SU(3)

SU(2)!U(1) SU(2)!U(1) U(1)!U(1)

Confined

Figure 4: Comparison between distribution plot of Polyakov loop Φ on the lattice [6] and that of the one-

loop effective potential for SU(3) gauge theory on R3 ×S1 with PBC adjoint quarks. Apart from the strong-

coupling confined phase, all of the specific behavior can be interpreted as the phases we found in our analyt-

ical calculations.

The schematic figure of the fundamental quark effect to the phase diagram is shown in Fig. 5.

The reconfined phase is replaced by the pseudo-confined phase because the Z3 symmetry is explic-

Figure 5: Prediction of distribution plot of Polyakov loop Φ based on the one-loop effective potential for

SU(3) gauge theory on R3 ×S1 with PBC adjoint and fundamental quarks.

itly broken by the fundamental quark contributions, but the gauge symmetry breaking pattern is

still same.
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4. SU(3) gauge theory with FTBC fundamental quarks [11]

In this section, we consider the FTBC for the fundamental fermion. Details of FTBC are

shown in Ref. [8, 9].

Contour plots of the SU(3) gauge theory with NF, f und = 120 FTBC fundamental quark for

the gauge symmetric and broken phase are shown in Fig. 6. Unlike the standard fundamental

Figure 6: Contour plot of [Vg +V f ]L
4 in the q1-q2 plane for the case of NF, f und = 120 FTBC fermions. The

left panel corresponds to the SU(3) deconfined phase and the right panel does to the SU(2)×U(1) C-broken

phase.

quark, we can clearly see the existence of the spontaneous gauge symmetry breaking of SU(3)→

SU(2)×U(1). The distribution plot of the fundamental Polyakov-loop is shown in Fig. 7.
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Figure 7: Distribution of the Polyakov loop in the complex plane for a SU(3) gauge theory on with NF, f und =

120 FTBC fermions. Solid circles correspond to the deconfinement phase and open circles do to the gauge

symmetry broken phase.

The phase diagram is shown in Fig. 8 in the L−1-m plane. In the case with FTBC fundamental
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Figure 8: The phase diagram in the L−1-m plane for a SU(3) gauge theory with NF, f und = 120 FTBC

fermions. The symbol D stands for the deconfinement phase and GB for the SU(2)×U(1) gauge symmetry

broken phase. In the gauge symmetry broken phase, charge conjugation is also spontaneously broken which

can be seen from the charge-conjugation pairs.

fermions, there is no U(1)×U(1) phase, but SU(2)×U(1) phase is still exist. The Z3 symmetry

is not explicitly broken as same as the adjoint fermions and also lattice simulations are possible.

Therefore, this system is very interesting to consider the gauge symmetry breaking and also the

confinement-deconfinement transition.
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