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Chiral Perturbation Theory is a useful tool to aid in perfargthe various extrapolations needed
in lattice QCD calculations of physical quantities. Theselude extrapolations in quark mass,
finite lattice spacing and finite size of the lattice. Espicthe latter will become more important
when the quark masses on the lattice become smaller.

Here we develop the needed two-loop integrals at finite veltordo the calculations for masses
and decay constants for all general mass cases.

| will present results based on an expansion in Bessel fomgtas well as on a version using
theta functions and compare their efficiency. Work is in pesg to combine these results with

two-loop ChPT calculations.
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1. Motivation

Lattice QCD calculates at different quark masses and vadueme Chiral Perturbation Theory
has been very useful in the past for doing the extrapolatiomgiark masses. Masses and decay
constants are known to two-loop order for the two- and ttil@esur case as well as for all mass
cases with partial quenching [1—3]. At finite volume as a pCil®T calculation the mass for the
two-flavour case [5] and the vacuum expectation value inlheetflavour case is known [4]. The
reason why we want to study also the general mass case ihth&ampton wavelength of the
pion is about ¥4 fm and one might therefore have to go beyond the leading leogumeemr-
terms with with present lattices. The convergence of Citeaturbation Theory is governed by the
resonance scale of/fin, ~ 0.25 fm.

In the remainder | will work with an infinite extension in thee direction and a sizk in the
three spatial directions. The first work on finite volume ections in this context was done in [6].
There is a large volume of work at one-loop order but at twaplonly the above quoted exists.

I will first explain in detail the simplest one-loop case,fatk integrals and then introduce the
extra parts needed to do the two-loop sunset integrals.

This work will be published in [7]. Some partial resdltsre in the master thesis [8].

2. Underlying formulas

In a finite volume the Fourier transform becomes a Fourier sistead. Let me first illustrate
it in one dimension with periodic boundary conditidagx+ L) = F(x):

dp

1
Fp)—1 Y Flon=[50 @)
2m L on 2rm/L 27'[

The integral with the subscript is defined to mean the sum. prbblem is that the sum is not
simple to regulate when you have divergences. The Poissomation formula allows to again
bring in an integral
1 d
L 2 Flm)= / SPdrrE(p) (2.2)
ph=2rm/L (= nL
If a twist angle® is introduced in the boundary conditigh @(x+ L) = €9¢(x), we get instead a
sum overp, = (2r/L)n+ (6/L) and
1 d
LY Fm)=y [5oe® CLE(p). (2.3)

pn=2mm/L+6/L f=nL

3. One-loop tadpole

Let me now illustrate the procedure on the simplest loopgrdl, the one-loop tadpole:

ddr X
X]= /v 2md rZ+m)" (3-1)

INote that there are misprints in both [8] and my slides at thrderence.
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We do the Poisson trick in the three spatial dimensions
dd Xél Tr—il-0
3.2
Z/ r2+m2)n I ( )
with I, = (0,mL, oL, nsl), © = (0,8/L). We split of the term witH, = 0, i.e. the infinite vol-

ume term, and the rest withX | = |X|® 4 |X|Y. The denominator can be brought up with'
parameters, fa= [;°dAe "2,

Z/ / dAAN-1gler=ilrOg-A(r 24nP) (3.3)

z,’r means sum without = 0 (all components zero). We shift the integration momentym &

2 . _
F+ile/(24) to obtain|1)Y = 5 5] o d)\)\”—le‘“‘z‘%""‘@f(g—;;de‘m This finally leads to
the master formulae for tadpoles:

12 .
1)V = 4nd/2r /d)\)\”"‘l e, (3.4)

We can now follow [6] and do the integral ov&rand obtain a sum over Bessel functions.

o 3
K, (Y,Z) :/0 dA AvleZAY/A:2<;> K, <2\/YZ),

ler()z e 'O g 1<rr12 '42>. (3.5)

This is valid also for noninteger dimensiods= 4 — 2¢ and can, if needed, be expandedesin
The triple sum can be simplified: with| f(1?) = Fy-oX(K) f(k), k = I? andx(k) is the number
of times thatl? = kL2. The exponential decay for larde follows directly from K;(mLy/k) ~

/ e mL\/R

2mL\/R

Alternatively, we can do the sum and obtain an integral ogepbi theta functions [9]. The
third Jacobi theta function i€s(u|T) = ,€™"+27n |t satisfiesB3(u+ n|T) = B3(u/T) and
'U2 . . .

Bs(u|T) = \/i—ire_H'TBg(% =1). Especially the latter is useful for small for the tadpole inte-
gral after doing the sum

1Y =

Y= (‘WTZF/ dAAn-2-1e —A”‘Zlnj xyz03 (—6j/(2m)|iL?/ (47 ) ) — (3.6)

If no twist angles are present, it becomes a cubed thetaifumdin the presence of twist angles,
the trick withx(k) of reducing the triple sum to a single sum does not work, ) (8.usually the
better choice in that case.

As an example for the numerical size of the correction | showig. 1 the relative correction
to the infinite volume integrah = J, gﬁﬁ for two different masses as well as the result for
some twist angles.
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Figurel: Left: The relative correction to the infinite volume integfe= |, %Ipzﬁ foru=0.77GeV
andm = my, mk. Also show is the contribution from the first spatial zero moRight: The same but with a
number of twist angle8, = 6, = 6, = 6,. For6 = r1/2 all terms with ar{l;); odd cancel, and the corrections

are much smaller.

4. More general one-loop integrals

The methods above can be generalize to more complicatetbopéntegrals as long as one
stays below thresholds. In particular, for integrals wittmerators ,r, the steps are

e Shiftwithr =r+il,/(2A)

e Integrals done witt,;r, — 24, /d

e Similar for more complicated numerators

e But extra terms show up: box and twisting break Lorentz iiavare
For integrals with more denominators and external momentum

e Combine the denominators with Feynman parameters
e Shiftwithr =r+il;/(2A) + (1—Xx)p

e This gives extra factors like (1P

e Center of mass system= (p,0,0,0) = I,-p=0

e Moving frame: deal with as for twist angle

Because of the broken Lorentz invariance, there are momestand this will lead to extra form-
factors at finite volume.

5. Sunset integrals

I will stick to the simplest sunset integral here. The mormplicated cases are treated in [7].
The simplest sunset integral is
dir dis X
() = | g e
v (2m® (2m (r2+mi)™ (2 +mg) *((r +s— p)? + M)

(5.1)

4
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We now need to do the Poisson summation trick twice:

dr X dirrelss
A A n 5.2
Z/ 4 (r2+m)"(2+m) 2 ((r+s—p)2+m)"™ 6.2

We stick here to the simplest caXe=1,n; =mp=nz3 =1 andp= (p,0,0,0). |, andls are of
the forml; = (0,n1L, noL, n3L). For the tadpole case we split ¢ff= 0 but here it is a little more
complicated. First remove the infinite volume part with

(X)) = (X)) + (X)), (5.3)

But we also have the parts where only one of the loop momeats fiee boundary or is quantized.

()Y = (1) + (D)s+ (1) +{(1))rs; (5.4)
The parts are defined as

ddr dYs {eilr~r,eils~s’eilt~(r+s)’eilr~reils~5}
(D) (rstrsy = {Z Z Z ZS} / d2md (r24+md)(L+m)((r+s—p)2+nmd) (5.5)

The sums are ovdl, # 0,Is=0;l; =0,Is# O;lt =1, =15 #O;l, # 0,15 # 0,I; # Is}. Thefirstthree
terms are those where only one-loop momentusror r + s is quantized. The last one with both
r,squantized.

5.1 Onemomentum gquantized

We have sums over full momentum integrals, so we can use ntamerdefinitions to relate
the three first terms:

o (r< sl < ls) = ((1)s(m,mp,mg) = ((1))r (Mp, My, Mg)
o (ret=r—s—pl —l, &P =1) — (1)) (m, M, mg) = ((1)); (Mg, Mz, my)
So we only need(1)),. For ((1)), thesintegral is standard infinite volume:
et 1 T(2=5) o
Z/ s Xt ™ (5.6)
where we can use the usual expansi%zs_)@ (MR)2—2 = 1o [Ao— 1 —log(?)] + &(e) with

Ao = 1/€+log(4m) +1— y andmm? = (1— x)ma +xmg + X(1— x)(r — p).
The part containing\o, ((1))ra, should cancel in the final result (of a physical quantity), s
we ignore it. We do partial integration ifor the log ) term obtaining

(D) = (Dat (Do + (D (Do =TI D vy (5)

The remaining part is

dr et M-t (1-2X)(r —p)?
N = T Z/ 4 (r2++mp) /o dox 2 (8)
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Bring up the denominators witha® parameters, shift, dor integral and finally symmetrize ex-
pression, and we get (details in [7])

(1))eh = @i /0 wd)\ld)\zd)\g,z\—ge*'\"z <m§ g4 22 A <2+ Azt Ao |52>> (5.9)

A

with M2 = A1 + Aomm3 + Agimg + 22288 p2 - )‘2+)‘3j F=1 —A1p, andA = A2z + AzAg+ Aghs.
This contains a triple integral and a triple sum.

5.2 Two momenta quantized: ((1))rs

The same general method works: Bring up denominators; Biégration momenta; do the
momentum integrals and since it is finite, det 4. This leads to the results

(@)= 16”2 / dArdAdAz A 26 (5.10)

With M2 = Aym8 + Apmg + Agmg + adede 2 Ao le g by 2 Uelol ang} = Aydp + AgAg + Ashy.

This contains a triple integral and a sextuple sum verylambd the previous subsection.

5.3 Preliminary numerical results

We basically proceed as in the tadpole case but with a fevaextFirst we sefA; = AX,
A2 = Ay, A3 =A(1—x—y). We can do the\ integral and obtain a sextuple sum over Bessel
functions. This can be reduced to a triple sum if there is risttand we use that- 1, = p-1s=0,
sincep has no components in the finite size directions. In that casieawve a triple sum ovier =12,
ko =12, ks = (I; —ls)? and a quantity(ky, ko.kz) that takes into account how often each sek;of
shows up in the sextuple sum. Alternatively, the sum can bleqmeed in terms of the Riemann or
Siegel theta function:

O(gr) = § emlanmin'z), (5.11)
nez9

This function has the useful propertléég (2T) = 69 (agara’) (with a anda ! integer) and
00 (1717 — t71) = \/det(—i1)e™' T 269 (77). The latter allows to speed up computation.

Some comments about the numerical work: Getting 5-6 difjsexision for((1)).s goes fine,
it takes a while but is not too bad. This method works beloveghold. For the speed; typically
for largemL the Bessel version is fastest, while for small or mediminthe theta function works
fastest. The two methods always agree. Reaching a specditenaay is easier with the theta
function version. Some representative preliminary nuoa¢results are shown in Fig. 2.

6. Conclusions and future

An important hurdle in two-loop Chiral Perturbation Theatyfinite volume has been taken.
Somewhat surprisingly, the various pieces in the sunsetlameeded dependent on the inputs used.
A short side-note is that the Riemann theta function in alivdrieties not present in mathematica
(we need its derivatives) but needs to be programmed.
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Figure2: The simplest sunset integral and its various parts for lreft=m, = mg = my, p?> = —m? (pion

on shell) relative to((1))® = 3.7384 10°° Ge\2. Right: my = mp = my, mg = My, p?> = —mg (kaon on
shell) relative to{(1))* = 6.7407 10°°> Ge\2. The funny bumps are not physical, we show absolute value in
a log plot and the result went through zero.

The cases with numerators are in progress [7]. Moving frant#aa twisting we have not
studied yet, but | see no obvious new problems appearingtWtwoop 3-flavour ChPT will need
to be redone from scratch since not all integral relationsfatite volume remain valid and they
were heavily used in the earlier work. This calculation ipiagress.
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