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1. Introduction

QED in two dimensions is a useful toy model to gain an understanding of the theory at fi-
nite temperature and chemical potential [1, 2, 3]. In particular, the physics at zero temperature
is interesting since one can study a system that can exist in several phases. The theory at zero
temperature is governed by two degrees of freedom, often referred to as the toron variables in a
Hodge decomposition of the U(1) gauge field on a [ x f torus, where [ is the circumference of
the spatial circle and 8 is the inverse temperature. Integrating over the toron fields projects on
to a state with net zero charge [4] and therefore there is no dependence on a flavor-independent
chemical potential [5]. The dependence on the isospin chemical potential for the two-flavor case
was studied in [6] and we extend this result to the case of f flavors in this paper. After integrating
out the toron variables, the dependence on the (f — 1) traceless' chemical potential variables can
be written in the form of a (2f — 2)-dimensional theta function. As the same gauge field (toron
variables, in particular) couples to all flavors, this theta function has a non-trivial Riemann matrix.
The resulting phase structure at zero temperature is quite intricate since it involves minimization
of a quasi-periodic function over a set of integers. Here, we summarize the results of [7], where
we derive the theta-function representation of the partition function and work out in great detail the
two-dimensional phase structure for the three-flavor case and the three-dimensional phase structure
for the four-flavor case.

2. Partition function

Consider f-flavored massless QED on a finite torus with spatial length / and dimensionless
temperature T = é All flavors have the same gauge coupling 7 where e is dimensionless. Let

o= (o) @.1)

be the flavor-dependent chemical potential vector. The partition function factorizes into bosonic
and toronic parts [3, 6], Z(i, T,e) = Zp(7,e)Z (1, 7). As we will only consider ourselves with the
physics at non-zero chemical potential, we focus on the toronic part

1 1 f
ziw,) = [ an [ am TTstm o), 2.2)
2 2 i=1
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and perform the integration over the toronic variables, /; and 5;.

2.1 Multidimensional theta function

As derived in [7], the toronic part of the partition function has a representation in the form of
a (2f — 2)-dimensional theta function:

1 > : Q0 .
Z(p,7) = \/TTfn;meXp [—nr (n’TH—;sf) (0 Q) <Tn—|—;s>

inear combinations that are invariant under uniform (flavor-independent) shifts

(2.3)
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where n is a (2f —2)-dimensional vector of integers. The (2f —2) x (2f —2) transformation matrix
T and the (f — 1) x (f — 1) matrix Q are given by

1 0 -~ 00 1 1

-4 -1 0 _1
0 100 D
T=|0 0" 00f: o (2.4)
0010 T R
-1 -1 =1Ff f f f
The dependence on the chemical potentials comes from
$ = (B i+ By —fo —fi3 - —fiy) 23)

where we have separated the chemical potentials into a flavor-independent component ji; = Zlle Ui
and (f — 1) traceless components iy = p; — i for 2 <k < f.
2.2 Particle number

We define particle numbers N;, Ny corresponding to the chemical potentials L;, fi, resp., as

A;aa“.lnzf(“’f)’ Ne(u,7) =N (1, 7) —Ne(p,7) for2<k<f. (2.6)

In the infinite-7 limit, the infinite sums in Eq. (2.3) are dominated by n = 0 which results in

Ni(p,7) =

Ne(,0) =iy~ for2 <k<f. 2.7)
Since the partition function is independent of fi;, Ny (i, 7) = Z'lf: Ni(ie,7) =0 forall 7.

2.3 Zero-temperature limit

In order to study the physics at zero temperature (7 — 0), we set

(a0
Q=T (0 Q) T. 2.8)

Then we can rewrite (2.3) using the Poisson summation formula as

1 - T _ -
Zt(”’r):Wk_z exp [—;(k’Q Ik —2K'T ls)} 2.9)
with
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, (2.10)

o=
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where the block in the upper left corner has dimensions (f — 1) x (f — 1) and the second block on
the diagonal has dimensions (f —2) x (f —2).

For fixed fig, the partition function in the zero-temperature limit is determined by minimizing
the term kK'Q 'k — 2k'T~'s in the exponent in Eq. (2.9) over the set of integers k € Z>/ 72, As-
suming in general that the minimum is M-fold degenerate, let S = {k } Mo k") € 72/-2 1abel
these M minima. Then

M 2f-3 . )

Nj(w,0) = Z(Zk Y K kﬁ-’)l—k}‘ljz> Lo2<j<fo1 @l
M 2f-3

Ny(p,0) = Z (Zk Y Kk 1) . 2.12)
i=1 I=f

If the minimum is non-degenerate (or if all k¥ individually result in the same N;(i,0)’s), the
particle numbers N;(u,0) assume integer or half-integer values at zero temperature. Since k €
Z*'=2 and we only have (f — 1) independent N;(p,0) (with Ny(p, ) = 0 for all 7), there are
in general many possibilities to obtain identical particle numbers from different k’s. The zero-
temperature phase boundaries in the (f — 1)-dimensional space of traceless chemical potentials
fy, .. r are determined by those ft’s leading to degenerate minima with different N’s (for individual
k°s). Phases with different particle numbers will be separated by first-order phase transitions.
While it is straightforward? to numerically determine the phase boundaries at zero temperature (by
numerically searching for the minimum), the resulting phase structure turns out to be quite intricate
(see details below).

Consider the system at high temperature with a certain choice of traceless chemical potentials
which results in average values for the traceless particle numbers equal to the choice as per (2.7).
The system will show typical thermal fluctuations as one cools the system but the thermal fluctu-
ations will only die down and produce a uniform distribution of traceless particle numbers if the
initial choice of traceless chemical potentials did not lie at a point in the phase boundary. Tuning
the traceless chemical potentials to lie at a point in the phase boundary will result in a system at
zero temperature with several co-existing phases. In other words, the system will exhibit spatial
inhomogeneities.

2.4 Quasi-periodicity

Changing variables [, | = flgs1 +mg—Smp_y + 17 'm; for 1 <k < f—1 withm; € Z for all
1 <i<f—1landmys_f/2 € Z, one can show that the partition function is quasi-periodic, resulting
in [7]

-1

Nep1(p',7) INk+1(ﬂ7T)+mk—§mf>1+ th (2.13)
i1

which is the same as the shift in fi.

%It is possible to perform certain orthogonal changes of variables in the space of traceless chemical potentials
and obtain expressions equivalent to (2.9) that are more convenient to deal with numerically when tracing the phase
boundaries. Such equivalent expressions for the case of f =3 and f = 4 are provided in [7].
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3. Results

3.1 Phase structure for f =2
We partially reproduce the results of [60] in this subsection. From Eq. (2.9) for f = 2, we obtain

_ o o= Ek—p)
A EL

. 3.1
? Yo e I (k—fn)” @D

The quasi-periodicity under i} = flo +m; (m; € Z) is evident. For small 7, the dominating term
in the infinite sum is obtained when k assumes the integer value closest to fi;. Therefore, Ny (i)
approaches a step function in the zero-temperature limit (for plots, see [6] and [7]). At zero tem-
perature, first-order phase transitions occur at all half-integer values of fi,, separating phases which
are characterized by different (integer) values of N,.

If a system at high temperature is described in the path-integral formalism by fluctuations (as
a function of the two Euclidean spacetime coordinates) of N, around a half-integer value, the cor-
responding system at zero temperature will have two coexisting phases (fluctuations are amplified
when 7 is decreased). On the other hand, away from the phase boundaries, the system will become
uniform at T = 0 (fluctuations are damped when 7 is decreased). For visualizations, see [7].

3.2 Phase structure for f =3

We determine the phase boundaries, separating cells with different (N,,/N3) as described in
Sec. 2.3. As mentioned in Sec. 2.3, it is also instructive to use a different coordinate system for the
chemical potentials, obtained from (i, i, 43) by an orthonormal transformation:

5 L 1
H @ 7§1 V3 H

bl=(n-%n O M |- (3.2)
- [ 2

U3 % ﬁ —% U3

We denote the corresponding particle numbers by N> and N3. An alternative representation of the
partition function, which simplifies the determination of vertices in terms of the coordinates fi;, is
given in [7]. In these coordinates, the phase structure is symmetric under rotations by /3 and
composed of two types of hexagonal cells, a central regular hexagon is surrounded by six smaller
non-regular hexagons, which are identical up to rotations. Figure 1 shows the phase boundaries at
zero temperature in both coordinate systems.

From Eq. (2.13) we see that the boundaries in the (i, fi3) plane are periodic under shifts by
integer multiples of (2,1) and (1,—1).

All i’s inside a given hexagonal cell result in identical N as T — 0, given by the coordinates of
the center of the cell. For example, fi’s in the central hexagonal cell lead to N 3 = (0,0) at T =0,
the six surrounding cells are characterized by Ny 3 = £(1,1), N3 = £(3,1), and No 3 = (-1, 3).
Every vertex is common to three cells. The coordinates of the vertices between the central cell and
the six surrounding cells are £(3, ), £(0,3), £(3,0), +(1,1), £(0,1), £(1,0).

First-order phase transitions occur between neighboring cells with different particle numbers
N> 3 at T = 0. At the edges of the hexagonal cells, two phases can coexist, and at the vertices, three
phases can coexist at zero temperature.
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Figure 1: Phase boundaries at zero temperature for f = 3 in the fi plane (left) and the fi plane (right).

In analogy to the two-flavor case, a high-temperature system with small fluctuations (as a
function of Euclidean spacetime) of [i> 3 can result in two or three phases coexisting or result in a
pure state as T — 0 depending on the choice of fi5 3

3.3 Phase structure for f =4

We use Eq. (2.9) to identify the phase structure in the (i, I3, fla) space, which is divided into
three-dimensional cells characterized by identical particle numbers N, 3 4 at zero temperature. At
the boundaries of these cells, multiple phases can coexist at zero temperature. We find different
types of vertices (corners of the cells), where four and six phases can coexist. At all edges, three
phases can coexist.

As in the three flavor case, we observe that the phase structure exhibits higher symmetry
in coordinates fi which are related to u through an orthonormal transformation. A particularly
convenient choice for f =4 turns out to be given by

My Hi
L] 111 11 |

= _ 3.3
i | 2 (1 —1> © (1 —1> 1 (3-3)
fy Ha

since the phase structure then becomes periodic under shifts parallel to the coordinate axes. The
explicit form of an alternative representation of the partition function in these coordinates is given
in [7]. At zero temperature the [i> 3 4 space is divided into two types of cells (see Fig. 2 for vi-
sualizations). We can think of the first type as a cube (centered at the origin, with side lengths
1 and parallel to the coordinate axes) where all the edges have been cut off symmetrically. The
original faces are reduced to smaller squares (perpendicular to the coordinate axes) with corners at
34 = (i%, j:i, i%) (permutations and sign choices generate the six faces). This determines the
coordinates of the remaining 8 corners to be located at (:t%, i%, :t%). The shift symmetry tells us
that these “cubic” cells are stacked together face to face. The remaining space (around the edges of
the original cube) is filled by cells of the second type (in the following referred to as “edge” cells),
which are identical in shape and are oriented parallel to the three coordinate axes.
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Figure 2: Cells defining the zero-temperature phase structure for f = 4 in the i coordinates as described in
the text. The left figure shows the central “cubic” cell, the figure in the center a single “edge” cell. The right
figure shows the cubic cell together with all 12 attaching edge cells.

This leads to different kinds of vertices (at the corners of the cells described above) where
multiple phases can coexist at zero temperature. There are corners which are common points of
two cubic and two edge cells (coexistence of 4 phases, for example at (i%,i%, j:%)), there are
corners which are common points of one cubic and three edge cells (coexistence of 4 phases,
for example at (i%, i%, i%)), and there are corners which are common points of six edge cells
(coexistence of six phases, for example at fir 3 4 = (j:%, :I:%, i%) Any edge between two of these
vertices is common to three cells.

3.4 Phase structure for f > 4

One can use the multidimensional theta function to study the phase structure when f > 4
but visualization of the cell structure becomes difficult. Nevertheless, it is possible to provide
examples for the coexistence of many phases. While for f =5, we find only up to (;) coexisting

phases, we find up to (2) coexisting phases for f = 6 (for example at fi; ¢ = (1, %,0,0,0)). We

also find up to (i) coexisting phases for f = 8 (for example at fI; g = (1,1,1,1,1,1,0)). This
leads us to conjecture that the maximal number of coexisting phases is given by (L ff;z J)’ increasing
exponentially for large f.
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