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We investigate the phase structurd ®#- N;)-flavor QCD, where two light flavors ar'¢d massive

flavors exist, to discuss the feasibility of the electroweak baryogenesis in realistic technicolor
scenario and to understand properties of finite density QCD. Because an appearance of a first
order phase transition at finite temperature is a necessary condition for the baryogenesis, it is
important to study the nature of finite temperature phase transition. Applying the reweighting
method, the probability distribution function of the plaquette is calculated in the many-flavor
QCD. Through the shape of the distribution function, we determine the critical mass of heavy
flavors terminating the first order region, and find it to become larger WithWe moreover

study the critical line at finite density and the first order region is found to become wider as
increasing the chemical potential. We discuss how the properties of real (2+1)-flavor QCD at
finite temperature and density can be extracted from simulations of many-flavor QCD.
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1. Introduction: QCD critical point and technicolor models

One of the most interesting topics among current researches of finite temperature QCD is to
find the critical point terminating the first order phase transition at finite density. From lattice QCD
simulations around the physical point of quark masses, the finite temperature phase transition is
considered to be crossover at low density, but is expected to turn into a first-order transition when
we increase the chemical potentjalor vary the quark masses. Since the sign problem becomes
severe when we increagein a lattice simulation of QCD, it will be important to investigate the
location of the critical surface at low density in the quark mass parameter spé2e-aj-flavor
QCD with dynamical up, down quark mass®ag and strange quark mass and to extrapolate
the critical surface to the high density region. The standard expectation for the critical surface as a
function of myg andm is illustrated in the left panel of Fifl The critical surface is indicated by
the red curves. The left side of the surface near the chiral limit of 3-flavor is the first order region
and the right side is crossover. The line of physical quark masses is the blue dashed line. The point
at which this line enters into the first order region is the QCD critical point at finite density. A
similar critical surface exists also in the heavy quark region, and the location of the critical surface
has been computed explicitly at apyby Ref. [], which is shown in Fig (right). The colored
surface is the critical surface,q andks are the hopping parameters (inverse masses) of up, down
and strange quarks. However, recent lattice QCD studies suggest that the critical region of the light
quark side at zero density is accessible only when the quark masses are very small and thus its
determination may be difficulf].

In this report, we study QCD having two light flavors and many massive fld@pra$ we will
see, the first order transition region becomes wider as the number of massive flavors increases. If
the critical mass of QCD with many flavors is larger than thgtof 1)-flavor QCD, the boundary
of the first order region can be investigated more easily for many-flavor QCD. Then, the many-
flavor QCD can be a good testing ground for investigatipgndependent universal properties,
such as the critical scaling near the tricritical point onrtigg = O axis. This will provide important
information for(2+ 1)-flavor QCD.

Moreover, the study of finite temperature many-flavor QCD is interesting for the construction
of the Technicolor (TC) model built of many flavor QCD, i.e. vector-like SU(3) gauge theory with
many fermions. In this model, the Higgs sector is replaced by a new strongly interacting gauge
theory and its spontaneous chiral symmetry breaking causes electroweak (EW) symmetry breaking.
The EW baryogenesis scenario requires a strong first order phase tra@fjitibigs been known
that the phase transition of the standard model is not strong first @denhereas the nature of
the phase transition of many-flavor QCD depends on the nhumber of flavors and masses.

In realistic TC models, two flavors of them are exactly massless and the mass ofNether
flavors must be larger than an appropriate lower bound otherwise the chiral symmetry breaking
produces too many (light pseudo) Nambu-Goldstone (NG) bosons. Three of them are absorbed
into the longitudinal mode of the weak gauge bosons, but any other NG bosons have not been
observed yet. On the other hand, the first order transition at small mass terminates at the critical
mass like(2+ 1)-flavor QCD. Thus, if one requires the first order EW phase transition in TC
model, it brings in the upper bound on the mas$pflavors. This can be a motivation to study
(2+ Nr)-flavor QCD.
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Figure 1: Left: Expected nature of phase transition in the light quark regidmg§, ms, 1) parameter space.
Right: Critical surface in the heavy quark region obtained in Egf. [

This report is based on ReB][ We use a histogram method to identify the order of the phase
transitions[@ [7,B]. The method is explained in the next section. We then show the result of the
endpoint of the first order transition in many-flavor QCDpat= 0 in Sec[3 and the chemical
potential dependence is discussed in Be&ectiorBis the summary and outlook of this study.

2. Endpoint of first order phase transitions by a histogram method

In this study, we consider QCD with two degenerate light quarks of the maesd the chem-
ical potentialy andNs heavy quarks. To investigate the nature of phase transitions, we compute
the probability distribution function of average plaguette value,

W(P; B, my, u,mg, ls) = /%94;947 S(P—P) eSS

. Nt
_ / PU 5(P—B) BN (detM(m, )2 1 det(me, ) (2
=1

where§; and§, are the actions of gauge and quark fieMsis the quark matrixNsite = NS3 x Nt is
the number of site, anf = 6/g3 is the simulation parametel is defined byP = —S/(6NsiteB)
and is 1x 1 Wilson loop for the standard plaquette gauge actid(P — I5) is the delta function,
which constrains the operatBrto be the value oP. We moreover define the effective potential,
Veff(P;B,mf,[.lf) = —InW(P;B,mf,uf).

Denoting the potential of 2-flavor at = 0 by Vo (P; B), that of (2+ N¢)-flavor is written as

Veff(P;Bamflef) :VO(P1 BO) - InR(P;vafvuf;B0)7 (22)
with
detM(m, 1)\ % N detM(my, uf
INR(P; B, m¢, kt; o) = 6(B —Po)NsiteP +In { | = M(m oM 0) .(2.3)
m.,0 (P-fixed)

where(: - ) (pfixeq) = (0(P — P) ) o/ (O(P— If5)>18O and(---)g, means the ensemble average over
2-flavor configurations generatedf@&t m and vanishingu. By is the simulation point, which may
differ from 3 in this method.
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Restricting the calculation to the heavy quark region, the second determin&gtffavors in
Eq. 23 is approximated by the leading order of the hopping parameter expansion,

[detM (Kh, [,lh)

detM(0.0) } = 288Nsiek P+ 12N3(2kn)™ (cosh{pn/T)Qr +i sinh(pth/T)Q) + -+ (2.4)

for the standard Wilson quark actidf] [ kn is the hopping parameter being proportional forni,

Qg and Q; are the real and imaginary part of the Polyakov loop. For improved gauge actions
such as§; = —6Nsitef3[Co(plaquettg + ¢ (rectangle], additionalc; x O(k*) terms must be consid-
ered, where, is the improvement coefficient areg = 1 — 8c;. However, since the improvement
term does not affect the physics, we will cancel these terms by a shift of the coeficiefibe
applicability of the hopping parameter expansion will be discussed later.

At a first order transition poink/e; shows a double-well shape as a functiorPpéind equiva-
lently the curvature of the potentiefVes/d?P takes a negative value in a regionRif To observe
this behavior must be adjusted to be the first order transition point. However, firmgpears
only in the linear term oP in the right hand side of Eq2(3), d?Vet/dP? is independent of [§].
Thus, the fine tuning is not necessary. MoreouéVe/dP? over the wide range d? can be easily
obtained by combining data obtained at differBrfl]]. We therefore focus on the curvature of the
effective potential to identify the nature of the phase transition.

Denotingh = 2N¢(2kp)™ for N; degenerate Wilson quarks with the hopping parametewe
obtain InR(P; B, kh, 0; Bo) = INR(P; h,0) +(plaquette term)}-O(kt %) for u = p, = O with

F\7(P; h,0) = <exq6hNS3§R]>(P:fixed,ﬁo) ) (2.5)

R(P; h,0) is given by the Polyakov loop and is independeniBgf The plaquette term does not
contribute tad®Ve/dP? and can be absorbed by shiftifig— 8* = 3+ 48N\¢k;t for Wilson quarks.
Moreover, one can deal with the case with non-degenerate masses by ado:pmp'?'f:l(ZKf)Nt

for the Wilson quark action dn = (1/4) z';'le(me)*Nf for the staggered quark action. Thus, the
choice of the quark action is not important. In the following, we discuss the mass depend@&nce of
through the parametéx

3. Critical quark mass at zero density for largeN;

We use the 2-flavor QCD configurations generated with the p4-improved staggered quark and
Symanzik-improved gauge actiof@,[thusP = —S/(6Nsite8). The lattice sizeNsite is 16° x 4.
The data are obtained at sixteen valuegdfom 3 = 3.52 to 400 keeping the bare quark mass
to ma= 0.1. The number of trajectories is 10000 — 40000, dependinfj.ofhe corresponding
temperature normalized by the pseudo-critical temperature is in the rafgdof 0.76 to 198,
and the pseudo-critical point is abg®it= 3.65, where the ratio of pseudo-scalar and vector meson
masses isnps/my ~ 0.7. All configurations are used for the analysis at zero density, while the
finite density analysis is performed every 10 trajectories. In the calculati®ifyh,0), we use
the delta function approximated dyfx) ~ 1/(A/T) exg—(x/A)?], whereA = 0.0025 is adopted.

Becausdr(P; h,0) is independent g8, we mix all data obtained at differefitas is done in Refld].

The results for IRR(P; h,0) are shown by solid lines in the left panel of H&jfor h = 0.01 — Q07.
A rapid increase is observed around- 0.82, and the gradient becomes largehascreases.
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Figure 2: Left: InR(P;h,0) as a function o for h = 0.01 — Q07. Right: The colored solid lines are
curvature of IrR(P; h,0). The dashed lines at#Vy/dP?(P).

The second derivativd?InR/dP? is calculated by fitting IR to a quadratic function oP
with a range o +0.015 and repeatin_g with variol The results are plotted in the right panel

of Fig.2 This figure shows thad?(InR)/dP? becomes larger with, and the maximum around
P = 0.81 exceeds®\p/dP? for h > 0.06. This indicates that the curvature of the effective potential,

dVerr  d™Vo  d*(nR)
dP2  dP? dpz '
vanishes ah ~ 0.06 and a region oP where the curvature is negative appears for ldrgéVe
estimated the critical valul; at which the minimum oblzveff/sz vanishes and obtaindgg =

0.061469).
We have defined the parametes 2Nf(2Kh)Nt for the Wilson quark. Then, the criticad,

correspondingn. decreases as
1/ he \"™

with N;, and the truncation error from the higher order terms of the hopping parameter expansion in
Kn becomes smaller a&¢ increases. The application range of the hopping parameter expansion was
examined in quenched QCD simulations with= 4, by explicitly measuring the size of the next-
to-leading order (NLO) terms of the expansiffp [They found that the NLO contribution becomes
comparable to that in the leading ordekat~ 0.18. Hence, this method may be applicable up to
aroundkp ~ 0.1. For instance, in the case df = 10 with Ny = 4, K¢ is 0.118.

(3.1)

4. Returns for understanding the QCD phase transition at finite density

We turn on a chemical potential for two light quarks anduy, for N; flavors, and discuss
the u dependence of the critical mass. As discussed above, we can investigate the critical region
more easily for largé\;. R(P;h, i) is then given by EqIZ3), i.e. ((detM(m, i)/ detM(m,0))?
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Figure 3: The curvatures of I§(P; h,u)atu/T=1.0 “/T

(lefty andu /T = /2 (right) with p, = 0. Figure 4: The critical lines in theh, 4) plane
for up = O (circles) andu, = u (diamonds).

X (detM(mn,uh)/detM(oo,0))Nf)(p;ﬁxed) for finite u anduy. The quark determinant is computed
using the Taylor expansion of [etM (my, i)/ detM (m;, 0)] in terms of /T up to O[u®] and the
Gaussian approximation i@ is applied to avoid the sign problem. This approximation is valid
for small u. Figured3 shows the curvatures & and In§atu/T =1 (left) and+/2 (right) with

Un = 0. The maximum values afIn RT/sz increases withu. This means the criticdl becomes
smaller agu increases.

We compute the criticah. The circle symbols in Figdl indicate the critical value offi as a
function of u for u, = 0, and the diamond symbols are thosefdige= u. In the region above this
critical line, the effective potential has the negative curvature region, indicating the transition is of
first order. It is clear that the first order region becomes widgr exreases. If the same behavior
is observed in2+ 1)-flavor QCD, this gives the strong evidence for the existence of the critical
point at finite density in the real world.

Although this analysis is valid only for lardd;, it gives a frame of reference for the study of
critical mass at finitgs. Notice that IFR(P; h, i) is given by the sum of IR(P;0, 1) and InR(P; h, 0)
approximately and that the behavior oﬁ('P; h,0) in Fig.@is very similar to that of IiR(P; 0, 1)
in Fig. 5 and 7 of Ref.[. InR(P;0,u) is estimated from the quark number susceptibility at
small 1 and InR(P; h,0) is obtained from the Polyakov loop at smaj. Both the quark number
susceptibility and the Polyakov loop rapidly increase at the same valBenefar the transition
point, which enhances the curvature oRIn Therefore, the criticah decreases witlu or the
critical u decreases with. The similar argument is applicable f(+ 1)-flavor QCD.

Moreover, an interesting application is to study universal scaling behavior near the tricritical
point. In the case that the chiral phase transition in the two flavor massless limit is of second order,
the boundary of the first order transition regiof{m,) is expected to behave &§ ~ |mg — my|%/2
in the vicinity of the tricritical point,(m;,my, 1) = (0,mg,0), from the mean field analysis. This
power behavior is universal for any. The density dependence is important as well, which is
expected to bey ~ |u|°® [@J]. The study of the light quark mass dependence of the critical mass
has been started and the preliminary results show that the dependence seems to d]small [
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5. Summary and outlook

We studied the phase structure of f)xflavor QCD to explore the realizability of the EW
baryogenesis in technicolor scenario and to understand properties of the finite density QCD. Fixing
the mass of two light quarks, we determined the critical mass of the Nitggrarks separating the
first order and crossover regions. The critical mass is found to become largédwithrthermore,
the chemical potential dependence of the critical mass is investigated foNarged the critical
mass is found to increase with If (24 1)-flavor QCD has the same property, this gives the strong
evidence for the existence of the critical point at finite density in the real world. Starting from large
N, the systematic study of properties of QCD phase transition would be possible.

The next step we must investigate is the light quark mass dependence of the critical heavy,
quark mass[IJ]. The nature of the chiral phase transition in the 2-flavor massless limit is still
open question?. In the case that the transition of 2-flavor QCD is of second order and the
tricritical point exists, the universal scaling behavior near the tricritical point is expected, which
is independent oN;, as discussed above. On the other hand, if the transition is of first order,
the critical k,, vanishes before going to the 2-flavor massless limit. Thus, our approach may give
important information to solve the long-standing problem of the chiral phase transition of 2-flavor
QCD.
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