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1. Introduction

Heavy ion experiments at the Large Hadron Collider (LHC) and the Relativistic Heavy Ion
Collider (RHIC) have set out the goal to produce and study new forms of strongly interacting mat-
ter, such as the quark gluon plasma. Besides direct emissions, we can observe this matter at the
point of break-up through the hadrons leaving the system. Prominent approaches include the hy-
drodynamical modelling of the angular distribution and the study of the event-by-event distribution
of conserved charges [1].

The chemical freeze-out, defined as the last inelastic scattering of hadrons before detection, has
already been studied in terms of the statistical hadronization model by fitting a chemical potential
and a temperature parameter to the pion, kaon, proton and other accessible yields from experiment
[2, 3]. For higher collision energies smaller chemical potential are realized at freeze-out. Repeating
the analysis for a series of beam energies provide a manifold of (T−µ) pairs on the phase diagram,
the freeze-out curve in Fig. 1.

While we know from lattice simulations that the QCD transition is a crossover at zero chemical
potential [4], a critical end point and a first order transition line may exist in the (T -µ) plane. Its
experimental search is based on the analysis of event-by-event fluctuations [5].

Parallel to the experimental effort lattice field theory has been able to describe the QCD transi-
tion in an increasing detail. The transition temperature has been determined [6, 7], and the curvature
of the transition line was also given [8]. The equation of state has been calculated at zero [9, 10]
and small chemical potentials [11]. Quark number susceptibilities have also been determined both
for strange as well as light flavors [12, 13]. All these results have been subject to a continuum
extrapolation.

The ever-increasing accuracy of fluctuation measurements at RHIC and LHC allows us today
to make direct comparisons of lattice results with data. The STAR experiment has recently pub-
lished the beam-energy and centrality dependence of the net-proton distribution [14]. For the net
electric charge distribution there are preliminary results available both from the STAR [15, 16] and
from the PHENIX collaboration [17].

The strategy for a successful comparison between theory and experiment has been long worked
on [18, 19, 20]. Here we use the observables suggested in Ref. [21]. The fluctuations for a con-
served quantum number, such as electric charge, are measured in a sub-system, small enough to
behave like a grand canonical ensemble, yet large enough to behave like an ensemble. The selec-
tion of a subsystem is accomplished through cuts in rapidity and transverse momentum. Still, the
fluctuations or even the mean value of net charge depends on the unknown subvolume. To cancel
this factor ratios are considered, such as mean/variance, which was described as a baryometer in
Refs. [20, 21]. Other relevant combinations are listed in Eq. (2.2).

At zero chemical potential the mean and skewness vanish, leaving us only with the kurtosis
and variance to work with at the energies of LHC. RHIC, however, works at non-zero chemical
potentials. There we expand the lattice results around zero chemical potential and extrapolate
to small but finite values and use then the mean and the skewness, which are now non-zero. In
Ref. [21] these observables were used as baryometer and thermometer, respectively.

The rules for such an extrapolation are given by the experimental setting: there is no strangeness
input in the colliding nuclei, and the ratio of protons and neutrons in the gold or lead atoms prede-
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Figure 1: The QCD phase diagram for small chemical potentials [8]. A temperature and a chemical
potential has been fitted in terms of the statistical hadronization model for every collision energy [2, 3]. For
comparison we show the crossover lines based on two observables from lattice simulations [8].

terimne the charge-to-baryon ratio in the outcoming hadrons as well. Thus:

〈S〉= 0, 〈Q〉= 0.4〈B〉 . (1.1)

These conditions can be respected if we introduce a strange and electric charge chemical poten-
tial in addition to the baryochemical potential, as it has already been a method in the statistical
hadronization model.

2. Fluctuations from the lattice

We generated finite temperature ensembles using the three-level Symanzik improved gauge
action with dynamical stout-improved staggered fermions (see Ref. [22]. The temporal extent of the
lattices determine the lattice spacing at a given temperature, we use Nt = 6, 8, 10, 12, 16 (around
Tc these translate to the lattice spacings of a = 0.22,0.16,0.13,0.11 and 0.08 fm, respectively).
At every lattice spacing and temperature we stored and analyzed every 10th configuration in the
rational hybrid Monte Carlo streams.

In a grand canonical ensemble we obtain the fluctuations as derivatives of the partition function
with respect to the chemical potentials:

χ
BSQ
lmn

T l+m+n =
∂ l+m+n(p/T 4)

∂ (µB/T )l∂ (µS/T )m∂ (µQ/T )n . (2.1)
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Figure 2: Statistics behind the fluctuation calculations. The stored configurations have been separated by
10 HMC trajectories, each. Each configuration was analyzed by (128 . . .256)×4 random sources.

and they are related to the moments of the distributions of the corresponding conserved charges by

mean : M = χ1 variance : σ
2 = χ2

skewness : S = χ3/χ
3/2
2 kurtosis : κ = χ4/χ

2
2 . (2.2)

With these moments we can express the volume independent ratios

Sσ = χ3/χ2 ; κσ
2 = χ4/χ2

M/σ
2 = χ1/χ2 ; Sσ

3/M = χ3/χ1 . (2.3)

The chemical potential dependence enters through the fermion determinant (detMi), allowing
for one µi parameter for each of the three dynamical flavor i = u,d,s. The actual observables are
based on the derivatives of the logarithm of these determinants:

A j = d
dµ j

log(detM j)
1/4 =

1
4

TrM−1
j M′j , (2.4)

B j =
d2

(dµ j)2 log(detM j)
1/4 =

1
4

Tr
(

M′′j M−1
j −M′jM

−1
j M′jM

−1
j

)
, (2.5)

C j =
d3

(dµ j)3 log(detM j)
1/4 =

1
4

Tr
(

M′jM
−1
j −3M′′j M−1

j M′jM
−1
j

+2M′jM
−1
j M′jM

−1
j M′jM

−1
j

)
, (2.6)

D j =
d4

(dµ j)4 log(detM j)
1/4 =

1
4

Tr
(

M′′j M−1
j −4M′jM

−1
j M′jM

−1
j +12M′′j M−1

j M′jM
−1
j M′jM

−1
j

−3M′′j M−1
j M′′j M−1

j −6M′jM
−1
j M′jM

−1
j M′jM

−1
j M′jM

−1
j

)
. (2.7)

We calculate these traces for every configuration using (128 . . .256)×4 random sources. The final
derivatives emerge as connected and disconnected contributions, e.g. to second order we have

∂i∂ j logZ =
〈
AiA j

〉
+δi j 〈Bi〉 . (2.8)

Where products of diagrams appear, a disjoint set of random sources are used, like here in Ai and
A j, even when i = j. The first (disconnected) term is responsible for most of the noise, lattice
artefacts, on the other hand, come mainly from the connected contributions.
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Figure 3: Lattice results on the skewness ratio for the charge (left) and the baryon number (right). The col-
ored symbols correspond to lattice QCD simulations at finite-Nt . Black points correspond to the continuum
extrapolation [23]; blue pentagons are the Nt = 8 results from the BNL-Bielefeld collaboration [21]
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Figure 4: RQ
12 as a function of µB: the different colors correspond to the continuum extrapolated lattice QCD

results, calculated in a range of temperatures around the QCD crossover [23].

3. Results

The quantities that we look at, in order to extract the freeze-out temperature and baryon chem-
ical potential, are the ratios RQ

31(T,µB) = χ
Q
3 /χ

Q
1 and RQ

12(T,µB) = χ
Q
1 /χ

Q
2 for small chemical

potentials, where µQ(µB) and µS(µB) are chosen to satisfy Eqs. (1.1). We also calculated the anal-
ogous baryon fluctuations. For details, see the journal version of this work [23].

In Fig. 3 we show the ratios RQ
31 (left) and RB

31 (right) as a function of the temperature. The
continuum extrapolations are shown as black dots. For the charge fluctuations we used five lattice
spacings. Baryon fluctuations are plagued by greater noise, but are less sensitive to cut-off ef-
fects, here we used four spacings. Charge fluctuation results from the BNL-Bielefeld collaboration
corresponding to Nt = 8 (from Ref. [21]) are also shown for comparison.

In Fig. 4 we show our results for RQ
12 as a function of the baryon chemical potential: the dif-

ferent curves correspond to different temperatures, in the range where freeze-out is expected. Such
expectations may come from the arguments in Ref. [24] supporting a freeze-out just below the tran-
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Figure 5: The baryon number (left) and flavor specific (right) kurtosis (κ ×σ2) prediction from lattice
QCD. These parameters are in principle accessible to LHC experiments, and may be used to define the
freeze-out temperature for specific flavors, or to the system as a whole.

sition. Alternative hints come from the existing estimates from the statistical hadronization model
[2, 3]. Similarly to the electric charge fluctuations, RB

31 will allow us to constrain the temperature
and using RB

12 we can then obtain µB.
Notice that the ordering of the temperatures in Fig. 4 (left) and (right) is opposite. Thus,

whether the chemical potentials from the charge and the baryon (proton) fluctuations deliver con-
sistent results will very much depend on the associated temperature, which we can extract from
the skewness analysis. A possible source for inconsistencies might be the comparison of proton
fluctuation data with baryon fluctuations from the lattice, and also the remnant effects of baryon
number conservation [25]. A cross-check between the freeze-out parameters from proton and elec-
tric charge data also test the basic assumption of equilibrium at the time of freeze-out.

Finally we show the kurtosis data in the continuum limit in Fig. 5. The kurtosis of baryon
number and light vs. strange quark numbers show different sensitivity to temperature, so are the
maxima and the deviation point from the hadron resonance gas prediction flavor dependent. The
great question that the experiment will have to decide is whether the freeze-out temperatures them-
selves are flavor dependent [26].
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