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1. Introduction

The exploration of the QCD phase diagram is one of the basitsgif lattice QCD calcula-
tions at non-zero temperature. It had been noted by PisanskWilczek that the order of phase
transitions in QCD may depend on the number of light quarkeksy of freedom and that qual-
itative features of the transition may also change with thark mass [1]. The basic features of
these considerations have been verified in lattice QCD lzdlons and generally are summarized
in the so-called Columbia plot [2], which shows the diffdreegions of first order, second order
and crossover transitions as a function of the two degemégdit and the strange quark mass (see
Fig. 1 (left) [3]).

© N=2 PURE
~leauce

mg 2nd
2" order
O(4)

order
Z(2)

physical point I ‘N3

T N1

FIRST ORDER

; (=2 //,,/"/‘m
' ;. {phys.line T -
‘ - __ CROSXOVER

N =3

st 2" order
2(2) f

.-order

Myd 0 My g ®

Figure 1. Left: schematic QCD phase transition behavior for diffé@ices of quark massesi(q, ms)

at zero chemical potential. Right: The critical surface gy the chiral critical line at finite chemical
potential. A QCD chiral critical point may exist if the suckabends towards to the physical point. The right
plot is taken from Ref. [4].

It now seems to be well established that the transition in @@Dits physical mass spectrum
is just a crossover [5, 6]. In the chiral limit &f = 2+ 1 QCD* the chiral transition of QCD could
be either first or second order depending on the value ofgrgnark at the tri-critical poinng!")
and the breaking strength of thg 1), symmetry [1]. There is some evidence that the QCD phase
transition in the chiral limit of (2+1)-flavor QCD is secondder and belongs to the universality
class of three dimension&@(N) spin models [A. However, the currently existin@(N) scaling
studies have been performed on rather coarse lattices dimdtaggered fermion actions that are no
longer state-of-the-art, i.e. lead to large taste violedioThe lattice studies using chiral fermions,
which reproduce correct chiral and axial symmetries of Q€Q, Domain Wall Fermions, are
currently too expensive to go down to lower than physicalkju@asses to have any detailed studies
on the scaling behavior of the chiral phase transition [Bihdis is not surprising that the order of
the QCD phase transition in the chiral limit is still undebdée and arguments in favor of a first
order transition have been put forward [9].

The chiral transition in QCD at vanishing quark chemicakpdigils is one of the corner stones
for our understanding of non-perturbative effects in gjipinteracting matter. A large experimen-

1The chiral limit in this case is taken for fixed physical valwf the strange quark masses.
2In the continuum limit, taken before the chiral limit is takehe universality class will b&(4). For studies with
staggered fermions at finite values of the lattice cut-a#fappropriate symmetry group@{2).
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lattice dim. | m/mEY | m;[MeV] | # B values| no. of traj.
24%% 6 1/20 160 17 10000
122x 6 1/27 140 11 10000
16%x 6 1/27 140 11 10000
203x 6 1/27 140 11 10000
283% 6 1/27 140 14 10000
328x 6 1/27 140 11 10000
328%x 6 1/40 110 16 8000
403% 6 1/60 90 11 7000
3Bx 6 1/80 80 5 3000
483% 6 1/80 80 5 9000

Table 1: Parameters of the numerical simulations.

tal program is put forward to understand and find evidencégaxistence in various observables.
In order to understand how the chiral phase transition ashiamg quark masses influences prop-
erties of QCD with its physical mass spectrum, it is cruaiagét control over the continuum and
chiral limit and disentangle universal, critical behaviorQCD thermodynamics from ordinary
regular contributions to the QCD partition function. Gegticontrol over the structure of the phase
diagram at vanishing chemical potential will also influence thinking about its extension to non-
zero chemical potential. For instance, it has long beenearginat the second order boundary line
of the region of first order transition in the small quark maggon of 3-flavor QCD may play arole
in the analysis of a possible critical point in QCD at nonezdensity (see Fig. 1 (right)). We now
learned that this region is tiny and detached from the phaysiass regime [3, 10]. The behavior
of QCD in the chiral limit of (2+1)-flavor QCD thus becomes maelevant for our understand-
ing of the critical behavior at zero and non-zero baryon dhehpotential. An important issue is
to establish the dependence of the QCD transition temperaiu the baryon chemical potential
and analyze its relation to the experimentally determimedZe-out curve. In order to have a well
defined definition of the transition line it is essential t@ wsprescription that relates to the true
second order phase transition line in the chiral limit. Tiois requires the analysis of the quark
mass dependence of various observables, e.g. mixed sbddes, that can be used to locate the
pseudo-critical temperature in QCD with its physical quarkss spectrum.

In this proceedings we report on the current state of thenaestigation on the chiral phase
transition ofN;=2+1 QCD using the Highly Improved Staggered Quarks.

2. Lattice parameters

The Highly Improved Staggered Quark (HISQ) action [11]@ttias already been used for the
study of QCD thermodynamics and it has been found that itfssgntly reduces the lattice artifacts
caused by the taste-symmetry specially in the transitigiorg6]. The use of the HISQ action with
these lattice spacings is expected to reduce the taste-siyynbreaking by more than an order of
magnitude [6] compared to the existing state-of-the-ammatations of chiral observables shown
in Ref. [7].
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Given the importance of improved chiral symmetry, i.e. @ violations of the taste-
symmetry, we performed our simulationséf = 2+ 1 QCD with lattice spacings corresponding
to temporal lattice siz&l; = 6 using the HISQ action. In the current simulation the steaggark
mass is chosen to be fixed to its physical valuﬁh() and five values of light quark masseams )
that are varied in the interval 1/,%Om|/m£,’hy 21/80. Here various quark masses correspond to
the lightest pseudo Goldstone pion masses of about 160,1140,90 and 80 MeV. To study the
volume dependences of various chiral observables we peefibsimulations at the physical quark
mass, i.e.m /mE™=27, with spatial lattice size dfs =12, 16, 20, 24 and 32. We too performed
simulations at two different volumes, i.Bls = 48 and 32 at our lowest quark mass corresponding
to lightest Goldstone pion mass of about 80 MeV. To ensagke = 4 we performed simulations
with Ne=24, 32 and 40 at light quark mass=m&™ /20, mE™ /40 andmf™ /60, respectively. The
parameters of simulations reported in current study arevsanzed in Table 1.

3. Universality classnear critical lines

Close to the chiral limit the chiral order parametét)(and its susceptibility v) can be
described by the universal properties of the chiral traonsit7]
oM 1

M(t,h) =hY%f5(z), and  xm(t,h) = SH=h h'/=11,(2) . (3.1)
0

Herez = th~1/B9 is the scaling variable, = %T%CTC andh = £ 11 are the rescaled temperature
and the rescaled quark mass, respectively. Scaling vasaahdh measure the distance that the
system is away from the criticality. The critical exponefits) and the scaling functionfs(z) and
fy(z) uniquely characterize the universality class of the chptese transition in 2-flavor QCD,
which is believed to be equivalent to that of the 3-d O(4) spimdel. However, the parameters
to, ho are non-universal and specific for a theairg, they depend on the action, lattice spacing,
value of the bare strange quark mags. These non-universal parameters can be determined by
studying the scaling behaviors of the chiral order pararaatd the chiral susceptibility described
in Eq. (3.1).

In the low temperature limit, which corresponds to largeatieg values of the scaling variable
z, the scaling functiorfg(z), M and xv behavior in the following way [12]

fo(d = "(2) = (-2 (1+cB(-2)#2/2), (3.2)
M ~h'%f°(2) = (—t)P (1+ C [3(—2)“35/2\/5> . Xxw~h2 (3.3)

Thus the contribution of Goldstone modes to the order patemealready enclosed in the scaling
function. In the high temperature limit, which corresponidghe large positive value o, the
scaling functionfg(z), order parametevl and its susceptibility behavior as follows [13]

fa(z) ~Ry z POV M~R t7POVh  xy~R t7ROD, (3.4)

whereRy is a universal coefficient and independentofNote that in this casgy is independent
onh.
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Figure 2: Volume dependences of light quark chiral condensate$ @aftt disconnected chiral susceptibili-
ties (right) at the physical quark mass.

4. Results

In Fig. 2 we show volume dependences of light quark chirableosatesy ), and discon-
nected chiral susceptibilitiegisc at the physical quark mass in the left and right plot, respelgt
The chiral condensate have minor volume dependences Wher20. Together with the volume
dependence of disconnected chiral susceptibilities ieigrahat forNs > 24 at the physical quark
mass the system reaches the thermodynamic limit.
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Figure 3: Volume dependences of light quark chiral condensate$ éaftt disconnected chiral susceptibili-
ties (right) for the light quark masgy = mé’hy/80 corresponding to; ~ 80 MeV.

The volume dependences of chiral condensates and dis¢edrtral susceptibilities at our
lowest quark mass correspondingntig ~ 80MeV are shown in Fig. 3. No evidence of a first order
phase transition of the QCD medium at current quark masssisrabd.

The mass dependences of chiral condensates and discahakicted susceptibilities are shown
in Fig. 4. Seen from the left plot no discontinuity of chir@intensates in temperature is present in
the currently investigated quark mass window. Observed fite plot in the middle it seems that in
the high temperature region disconnected chiral condessae independent of quark mass. It may
indicate the O(N) scaling of disconnected chiral suscépitds according to Eq. (3.4) although
more statistics especially of the dataset for low quark messieeded to draw firm conclusion. In
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the right plot we show the disconnected chiral suscegtfitiultiplied by a factor of m /mé’hy)l/z.
In the low temperature region one can see that the rescasedrdiected chiral susceptibility is

almost independent of quark mass. This arises from theibation of Goldstone modes which is
encoded in Eq. (3.3).

2 140 16
e m =160 MeV —x—
20 % m;=140 MeV —e— m,=160 MeV —x— m,=160 MeV —%—
18 Q m,=110 MeV —a— 120 | m;=140 MeV —o— + 14 m;=140 MeV —o—
M= 90 MeV —o— my=110 MeV s m=110 MeV s
16 ° my= 80 MeV —m— 100 | M= 90 MeV —e— 12 m=90MeV —e—
1 2k mEsOMeY —u— ¢ ¢ My 80 MeV —m—
® 5 x i?
¥ Y ow oot e bt
* v
Ea 1 P C x 2 IS 8 3 b 15k
8 S o % 60 ¢ 1 o ?é i i * 3 tox
6 o X o @ 6 s 8 o
4 LRS- 40 . e ¥ o= %gx ° {.} .
#2290 F s §x* LI alo % st
2 *els old ¢ 3 ;
0 2
120 130 140 150 160 170 120 130 140 150 160 170 120 130 140 150 160 170
T [Mev] T [Mev] T [MeV]

Figure 4: Quark mass dependences of light quark chiral condensaf®s disconnected chiral susceptibil-
ities (middle) and rescaled disconnected chiral suscéipéb by a factor of(m /mé’hy)l/z(right).
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Figure 5: Left: O(2) scaling analysis for all quark masses using noivarsal parametery, hy and T
obtained from the scaling fits to the order paraméder mg(@) N# for our lightest two pion masses.
Right: O(2) scaling analysis with regular terms parameéstias in Eq. (4.1).

To check the scaling window of QCD system using the HISQ actie assume our lowest two
quark mass are in the scaling regime. We fit the order pararhetiefined asns(@y) N at two
lowest quark masses using Eq. (3.1) with O(2) scaling fonétand obtained the non-universal
critical exponentdg, hp andT.. We then plot all the data sets using these non-universiatairi
exponents in the framework ™ /h'/% as a function o as shown in the left plot of Fig. 5. We can
clearly see that scaling window in the case of HISQ actioimkercompared to the p4fat3 action
on N; = 4 lattices shown in Ref. [7]. The scaling violation seen ia tlft plot may arise from

the regular part of the QCD partition function. Here we fit foaling violation via the following
ansatz

Te Mg

3We also performed a fit using Z(2) scaling function with aniiddal parametem. and the fit favors a vanishing
value ofmg.
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and the fit is shown in the right plot of Fig. 5. The above angatiz only linear behavior of quark
mass in the regular term seems to be sulfficient to describdatfaeand this allows a description of
the scaling violation at nonzero values of quark massesheiatudy of the scaling behavior of the
chiral phase transition.

5. Summary

In order to study the scaling behavior of chiral phase ttanmsive have performed simulations
of 2+1 flavor QCD with pion mass ranging from 160 MeV down to 8@\Wusing HISQ action
on N; = 6 lattices. No evidence of first order phase transition inctimeent quark mass window is
found. The scaling window of chiral phase transition iniggged using the HISQ action shrinks
compared to that using the p4fat3 action. However, chiralensates at all quark masses can be
described by the scaling function with a simple regular tefims allows a quantitative description
of scaling violations for non-zero values of quark massehervicinity of chiral phase transition.
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