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on the simulations using Highly Improved Staggered fermions on lattices with temporal extent
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s &1/80. Here various quark masses correspond to

pseudo Goldstone pion masses ranging from about 160 MeV to about 80 MeV. The O(N) scaling

of chiral observables and the influence of universal scalingon physical observables in the region

of physical quark mass values are also discussed.

31st International Symposium on Lattice Field Theory - LATTICE 2013
July 29 - August 3, 2013
Mainz, Germany

∗Speaker.
†Current address: Institute of Particle Physics, Central China Normal University, Wuhan, 430079, China

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
1
5
7

Chiral phase transition of N f =2+1 QCD with the HISQ action H.-T. Ding

1. Introduction

The exploration of the QCD phase diagram is one of the basic goals of lattice QCD calcula-
tions at non-zero temperature. It had been noted by Pisarskiand Wilczek that the order of phase
transitions in QCD may depend on the number of light quark degrees of freedom and that qual-
itative features of the transition may also change with the quark mass [1]. The basic features of
these considerations have been verified in lattice QCD calculations and generally are summarized
in the so-called Columbia plot [2], which shows the different regions of first order, second order
and crossover transitions as a function of the two degenerate light and the strange quark mass (see
Fig. 1 (left) [3]).
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Figure 1: Left: schematic QCD phase transition behavior for different choices of quark masses (mu,d, ms)
at zero chemical potential. Right: The critical surface swept by the chiral critical line at finite chemical
potential. A QCD chiral critical point may exist if the surface bends towards to the physical point. The right
plot is taken from Ref. [4].

It now seems to be well established that the transition in QCDwith its physical mass spectrum
is just a crossover [5,6]. In the chiral limit ofN f = 2+1 QCD1 the chiral transition of QCD could
be either first or second order depending on the value of strange quark at the tri-critical point (mtri

s )
and the breaking strength of theU(1)A symmetry [1]. There is some evidence that the QCD phase
transition in the chiral limit of (2+1)-flavor QCD is second order and belongs to the universality
class of three dimensionalO(N) spin models [7]2. However, the currently existingO(N) scaling
studies have been performed on rather coarse lattices and with staggered fermion actions that are no
longer state-of-the-art, i.e. lead to large taste violations. The lattice studies using chiral fermions,
which reproduce correct chiral and axial symmetries of QCD,e.g. Domain Wall Fermions, are
currently too expensive to go down to lower than physical quark masses to have any detailed studies
on the scaling behavior of the chiral phase transition [8]. It thus is not surprising that the order of
the QCD phase transition in the chiral limit is still under debate and arguments in favor of a first
order transition have been put forward [9].

The chiral transition in QCD at vanishing quark chemical potentials is one of the corner stones
for our understanding of non-perturbative effects in strongly interacting matter. A large experimen-

1The chiral limit in this case is taken for fixed physical values of the strange quark masses.
2In the continuum limit, taken before the chiral limit is taken, the universality class will beO(4). For studies with

staggered fermions at finite values of the lattice cut-off the appropriate symmetry group isO(2).
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lattice dim. ml/mphy
s mπ [MeV] # β values no. of traj.

243× 6 1/20 160 17 10000
123× 6 1/27 140 11 10000
163× 6 1/27 140 11 10000
203× 6 1/27 140 11 10000
243× 6 1/27 140 14 10000
323× 6 1/27 140 11 10000
323× 6 1/40 110 16 8000
403× 6 1/60 90 11 7000
323× 6 1/80 80 5 3000
483× 6 1/80 80 5 9000

Table 1: Parameters of the numerical simulations.

tal program is put forward to understand and find evidence forits existence in various observables.
In order to understand how the chiral phase transition at vanishing quark masses influences prop-
erties of QCD with its physical mass spectrum, it is crucial to get control over the continuum and
chiral limit and disentangle universal, critical behaviorin QCD thermodynamics from ordinary
regular contributions to the QCD partition function. Getting control over the structure of the phase
diagram at vanishing chemical potential will also influenceour thinking about its extension to non-
zero chemical potential. For instance, it has long been argued that the second order boundary line
of the region of first order transition in the small quark massregion of 3-flavor QCD may play a role
in the analysis of a possible critical point in QCD at non-zero density (see Fig. 1 (right)). We now
learned that this region is tiny and detached from the physical mass regime [3, 10]. The behavior
of QCD in the chiral limit of (2+1)-flavor QCD thus becomes more relevant for our understand-
ing of the critical behavior at zero and non-zero baryon chemical potential. An important issue is
to establish the dependence of the QCD transition temperature on the baryon chemical potential
and analyze its relation to the experimentally determined freeze-out curve. In order to have a well
defined definition of the transition line it is essential to use a prescription that relates to the true
second order phase transition line in the chiral limit. Thistoo requires the analysis of the quark
mass dependence of various observables, e.g. mixed susceptibilities, that can be used to locate the
pseudo-critical temperature in QCD with its physical quarkmass spectrum.

In this proceedings we report on the current state of the art investigation on the chiral phase
transition ofN f =2+1 QCD using the Highly Improved Staggered Quarks.

2. Lattice parameters

The Highly Improved Staggered Quark (HISQ) action [11] action has already been used for the
study of QCD thermodynamics and it has been found that it significantly reduces the lattice artifacts
caused by the taste-symmetry specially in the transition region [6]. The use of the HISQ action with
these lattice spacings is expected to reduce the taste-symmetry breaking by more than an order of
magnitude [6] compared to the existing state-of-the-art computations of chiral observables shown
in Ref. [7].
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Given the importance of improved chiral symmetry, i.e. reduced violations of the taste-
symmetry, we performed our simulations ofN f = 2+1 QCD with lattice spacings corresponding
to temporal lattice sizeNτ = 6 using the HISQ action. In the current simulation the strange quark
mass is chosen to be fixed to its physical value (mphy

s ) and five values of light quark masses (ml)
that are varied in the interval 1/20& ml/mphy

s &1/80. Here various quark masses correspond to
the lightest pseudo Goldstone pion masses of about 160, 140,110, 90 and 80 MeV. To study the
volume dependences of various chiral observables we performed simulations at the physical quark
mass, i.e.ml/mphy

s =27, with spatial lattice size ofNs =12, 16, 20, 24 and 32. We too performed
simulations at two different volumes, i.e.Ns = 48 and 32 at our lowest quark mass corresponding
to lightest Goldstone pion mass of about 80 MeV. To ensuremπL & 4 we performed simulations
with Ns=24, 32 and 40 at light quark massml=mphy

s /20, mphy
s /40 andmphy

s /60, respectively. The
parameters of simulations reported in current study are summarized in Table 1.

3. Universality class near critical lines

Close to the chiral limit the chiral order parameter (M) and its susceptibility (χM) can be
described by the universal properties of the chiral transition [7]

M(t,h) = h1/δ fG(z) , and χM(t,h) =
∂M
∂H

=
1
h0

h1/δ−1 fχ(z) . (3.1)

Here z = th−1/βδ is the scaling variable,t = 1
t0

T−Tc
Tc

and h = 1
h0

ml
ms

are the rescaled temperature
and the rescaled quark mass, respectively. Scaling variablest andh measure the distance that the
system is away from the criticality. The critical exponentsβ , δ and the scaling functionsfG(z) and
fχ(z) uniquely characterize the universality class of the chiralphase transition in 2-flavor QCD,
which is believed to be equivalent to that of the 3-d O(4) spinmodel. However, the parameters
t0, h0 are non-universal and specific for a theory,i.e. they depend on the action, lattice spacing,
value of the bare strange quark massetc. These non-universal parameters can be determined by
studying the scaling behaviors of the chiral order parameter and the chiral susceptibility described
in Eq. (3.1).

In the low temperature limit, which corresponds to large negative values of the scaling variable
z, the scaling functionfG(z), M andχM behavior in the following way [12]

fG(z)≃ f−∞
G (z) = (−z)β

(

1+ c2β (−z)−βδ/2
)

, (3.2)

M ≃ h1/δ f−∞
G (z) = (−t)β

(

1+ c2β (−z)−βδ/2
√

h
)

, χM ∼ h−1/2. (3.3)

Thus the contribution of Goldstone modes to the order parameter is already enclosed in the scaling
function. In the high temperature limit, which correspondsto the large positive value ofz, the
scaling functionfG(z), order parameterM and its susceptibility behavior as follows [13]

fG(z)∼ Rχ z−β(δ−1), M ∼ Rχ t−β(δ−1)h, χM ∼ Rχ t−β(δ−1). (3.4)

whereRχ is a universal coefficient and independent ofh. Note that in this caseχM is independent
on h.
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Figure 2: Volume dependences of light quark chiral condensates (left) and disconnected chiral susceptibili-
ties (right) at the physical quark mass.

4. Results

In Fig. 2 we show volume dependences of light quark chiral condensates〈ψ̄ψ〉l and discon-
nected chiral susceptibilitiesχdisc at the physical quark mass in the left and right plot, respectively.
The chiral condensate have minor volume dependences whenNs ≥ 20. Together with the volume
dependence of disconnected chiral susceptibilities it is clear that forNs ≥ 24 at the physical quark
mass the system reaches the thermodynamic limit.
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Figure 3: Volume dependences of light quark chiral condensates (left) and disconnected chiral susceptibili-
ties (right) for the light quark massml = mphy

s /80 corresponding tomπ ≃ 80 MeV.

The volume dependences of chiral condensates and disconnected chiral susceptibilities at our
lowest quark mass corresponding tomπ ≃ 80MeV are shown in Fig. 3. No evidence of a first order
phase transition of the QCD medium at current quark mass is observed.

The mass dependences of chiral condensates and disconnected chiral susceptibilities are shown
in Fig. 4. Seen from the left plot no discontinuity of chiral condensates in temperature is present in
the currently investigated quark mass window. Observed from the plot in the middle it seems that in
the high temperature region disconnected chiral condensates are independent of quark mass. It may
indicate the O(N) scaling of disconnected chiral susceptibilities according to Eq. (3.4) although
more statistics especially of the dataset for low quark massare needed to draw firm conclusion. In
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the right plot we show the disconnected chiral susceptibility multiplied by a factor of(ml/mphy
s )1/2.

In the low temperature region one can see that the rescaled disconnected chiral susceptibility is
almost independent of quark mass. This arises from the contribution of Goldstone modes which is
encoded in Eq. (3.3).
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s )1/2(right).
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Figure 5: Left: O(2) scaling analysis for all quark masses using non-universal parameterst0, h0 andTc

obtained from the scaling fits to the order parameterM = ms〈ψ̄ψ〉lN4
τ for our lightest two pion masses.

Right: O(2) scaling analysis with regular terms parameterized as in Eq. (4.1).

To check the scaling window of QCD system using the HISQ action we assume our lowest two
quark mass are in the scaling regime. We fit the order parameter M defined asms〈ψ̄ψ〉lN4

τ at two
lowest quark masses using Eq. (3.1) with O(2) scaling function3 and obtained the non-universal
critical exponentst0, h0 andTc. We then plot all the data sets using these non-universal critical
exponents in the framework ofM/h1/δ as a function ofz as shown in the left plot of Fig. 5. We can
clearly see that scaling window in the case of HISQ action shrinks compared to the p4fat3 action
on Nτ = 4 lattices shown in Ref. [7]. The scaling violation seen in the left plot may arise from
the regular part of the QCD partition function. Here we fit thescaling violation via the following
ansatz

M = h1/δ fG(z)+ freg, freg =

(

a0+a1
T −Tc

Tc

)

ml

ms
, (4.1)

3We also performed a fit using Z(2) scaling function with an additional parametermc and the fit favors a vanishing
value ofmc.
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and the fit is shown in the right plot of Fig. 5. The above ansatzwith only linear behavior of quark
mass in the regular term seems to be sufficient to describe thedata and this allows a description of
the scaling violation at nonzero values of quark masses via the study of the scaling behavior of the
chiral phase transition.

5. Summary

In order to study the scaling behavior of chiral phase transition we have performed simulations
of 2+1 flavor QCD with pion mass ranging from 160 MeV down to 80 MeV using HISQ action
on Nτ = 6 lattices. No evidence of first order phase transition in thecurrent quark mass window is
found. The scaling window of chiral phase transition investigated using the HISQ action shrinks
compared to that using the p4fat3 action. However, chiral condensates at all quark masses can be
described by the scaling function with a simple regular term. This allows a quantitative description
of scaling violations for non-zero values of quark masses inthe vicinity of chiral phase transition.
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