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We study the restoration of the spontaneously broken céyraimetry and the anomalously bro-
ken axial U(1) symmetry in finite temperature QCD at zero dleahpotential. We use 2 flavors
lattice QCD with optimal domain-wall fermion on the 3% 6 lattice, with the extenhs = 16

in the fifth dimension, in the temperature rarige- 130— 230 MeV. To examine the restoration
of the chiral symmetry and the axigl(1) symmetry, we use diluted, noises to calculate the
chiral condensate, and the chiral susceptibilities in ttedag and pseudoscalar meson channels,
for flavor singlet and non-singlet respectively. From thgeteeracy of the chiral susceptibilities
aroundT, it suggests that the axibl(1) symmetry is restored in the chirally symmetric phase.
Moreover, we examine the spectral dengiiA¢) of the 4D effective Dirac operator with exact
chiral symmetry, which is obtained by computing zero modas [180+180) conjugate pairs of
low-lying modes for each gauge configuration. The suppoessf low modes in the spectral
density provides a consistency check of the restoratiorxiefl & (1) symmetry in the chirally
symmetric phase.
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1. Introduction

In QCD, the classical action &; massless quarks has the symm@&ty(N¢ ), x SU(N¢)r x
U(1)y xU(1)a. In the quantum theory, at zero temperature, the chiral sgtmynBU(N¢)_ x
SU(Ns)r is broken spontaneously ®8U(Ns)y by the vacuum of QCD, and tHé(1)a symme-
try is broken by the axial anomaly. It is expected that at highperature, both chiral symmetry
andU (1), symmetry are restored. The question is, at what temper&gutes chiral symmetry is
restored, and whethér(1)a symmetry is also restored & ~ Te.

Lattice QCD with exact chiral symmetry [1, 2] is an ideal thetacal framework to study the
nonperturbative physics from the first principles of QCDuglit is in a good position to answer
above questions. However, it is rather nontrivial to parfdvionte Carlo simulation such that the
chiral symmetry is preserved at a high precision and allltapoal sectors are sampled ergodically.
Currently, there are three groups (HotQCD, JLQCD, TWQCD{gming large-scale simulations
of finite-temperature QCD with domain-wall/overlap fermioWhile HotQCD and JLQCD have
been using IBM Blue Gene supercomputers, TWQCD has beeg as®PU cluster (currently
consisting of 320 Nvidia GPUs, with sustained 100 Tflop/s).

The HotQCD Collaboration has been using the conventionaiaiio-wall fermion with the
Shamir kernel, which suffers from large chiral symmetryaiag (i.e., large residual mass), es-
pecially in the finite temperature QCD [3]. On the other hahd, JLQCD Collaboration and the
BMW Collaboration have used the overlap fermion in a fixedbtogy, which attains very good
chiral symmetry, but in the expense of sampling all topalabsectors ergodically [4, 5]. To over-
come the deficiencies of above two approaches, TWQCD calitiba has been using the optimal
domain-wall fermion (ODWF) [6, 7] to preserve the chiral syetry, which not only attains a good
chiral symmetry with a modest extension (els,= 16) in the fifth dimension, but also samples
all topological sectors ergodically.

Mathematically, ODWF is a theoretical framework to presetive chiral symmetry optimally
with a set of analytical weightsfws,s=1,--- ,Ns}, one for each layer in the fifth dimension
[6]. Thus the artifacts due to the chiral symmetry breakirithvinite Ns can be reduced to the
minimum, especially in the chiral regime. In general, thédidkensional effective Dirac operator of
massless ODWF can be written as [8]

D=1 1T
= [1+ySopt(H)]/(2r), sopt(H)_lmiNST,
s=17% (1.1)
1-wH B 1 _ - .
S= T an T CHu(lHdyHe) T, T = [2mo(1—dmy)]

wherec andd are constants, and,, = 5Dy (—mp), with Dy(—mp) the usual Wilson-Dirac oper-
ator plus a negative parametermy(0 < my < 2). HereS(H) = HRz(H), whereRz(H) is the
Zolotarev optimal rational approximation (2)~%/2[9].

Recently we have demonstrated that it is feasible to perfafarge-scale dynamical QCD
simulation with ODWF, which not only preserves the chirahsyetry to a good precision, but also
samples all topological sectors ergodically. To recap, eogom HMC simulations of 2 flavors
QCD on a 18 x 32 lattice, with ODWF at\s = 16 and plaquette gauge actionfat= 5.95. Our
results of the topological susceptibility [10] and the masd decay constant of the pseudoscalar
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meson [11] agree with the sea-quark mass dependence prkdigtthe NLO ChPT. This asserts
that the nonperturbative chiral dynamics of the sea-quarkswell under control in our HMC
simulations. Recently we have extended our simulationgnger lattices (2Dx 40, 24 x 48),
with plaquette gauge action fit= 5.95 andf3 = 6.00 respectively. In this paper, we study the
restoration of the spontaneously broken chiral symmetd/tae anomalously broken axial U(1)
symmetry in finite temperature QCD at zero chemical potentia

2. Gauge ensembles

We perform simulations of two flavors QCD on the3166 lattice, with the plaquette gauge
action, for 7 values o3 = 6/¢?, ranging fromB = 5.85 to 8 = 5.90. For the quark part, we
use ODWF withc =1, d =0 (i.e., H = Hy), Ns = 16, andAmin/Amax= 0.01/6.2. At eachf,
simulations are performed for 3-4 different sea-quark ®swsga = 0.01, 0.015, 0.02, and 0.03,
such that extrapolation to the chiral limit can be carriet! ddioverover, in order to fix the scale,
we also perform zero temperature simulations on tie1®2 lattice, for = 5.95,5.90 and 588.
For each B, mq) ensemble on the 26« 6 lattice, we generate around 4000-6000 trajectories with
a single GPU or a set of GPUs. After discarding the initial 8@fectories for thermalization, we
sample one configuration every 10-20 trajectories, then ave B00-600 configurations for each
ensemble.

To determine the lattice scale, we compute the Wilson flowy f2ach configuration of the
zero temperature gauge ensemble8 at5.88, 5.90, and 5.95, and use the BMW scheme [13]

tHRED)|  —os
dt t=w2
to obtain the value ofvy/a for each ensemble. Using the inverse lattice spaeingwe have
determined a8 = 5.95 (by heavy quark potential with Sommer parameger 0.49 fm) [11], we
obtainwg, and also the values af ! for 3 = 5.90 andB = 5.88. Then the values af ! at other
B’s are obtained by RG extrapolation.
To measure the chiral symmetry breaking due to fiNte we compute the residual mass

according to the formula [8]

Tr(De+mg) 2
Tr(ys(Dc+ My) y5(Dc + My

where (D¢ +mq) ! denotes the valence quark propagator withequal to the sea-quark mass,
Tr denotes the trace running over the site, color, and Dindicés. For an ensemble of gauge
configurations, one has two different ways to measure thdualsmass. One way is to compute
(2.1) for each gauge configuration of the ensemble and th&exnothe average, which is denoted
as(Mes);. Another way is to compute the ensemble average of the ntionenad the denominator
of (2.1) respectively, and then obtain their ratio, whicllénoted agMes),. Using 240Z, noise
vectors with dilution in the color and Dirac spaces £8 x 4 = 240) for each configuration, we
compute the numerator and the denominator of (2.1), androtita residual masse$/es); and
(Mres),, as listed in Table 1. We see that these two different meairthe residual mass are in
good agreement with each other.

IV'res =

)]—1 — My, (2-1)
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Table 1: Residual masses of the gauge ensembles, where the first nimeaeh entry iSMres),, and the

second numbeMres)

. The number of configurations in each gauge ensemble vaoies300 to 600.

| B mga = 0.01 | mga = 0.02 | mga = 0.03 |
5.850 | 0.00233(12), 0.00240(13) 0.00208(27), 0.00212(27) 0.00151(11), 0.00151(11)
5.860 | 0.00234(12), 0.00241(12) 0.00178(9), 0.00180(9)| 0.00153(29), 0.00155(29)
5.870 || 0.00141(12), 0.00145(13) 0.00155(9), 0.00157(9)| 0.00136(6), 0.00138(6)
5.875| 0.00062(4), 0.00064(4)| 0.00132(8), 0.00136(9)| 0.00105(5), 0.00107(5)
5.880 | 0.00094(5), 0.00097(5)| 0.00067(5), 0.00069(5)| 0.00074(4), 0.00075(4)
5.890 | 0.00046(5), 0.00048(5)| 0.00035(5), 0.00035(5)| 0.00041(6), 0.00042(6)
5.900 | 0.00018(2), 0.00018(2)| 0.00016(4), 0.00017(4)| 0.00022(4), 0.00022(4)

Chiral susceptibilities

We use the two-point functions of scalars and pseudosctdansrobing the restoration of
SU(2). x SU(2)r symmetry, as well as the restorationldfl) s symmetry. For two flavors QCD
(my = mg = M), in the scalar channel, we have the flavor singtet: f(uu+ dd) and flavor

non-singlet,d = ad, du, f(uu dd). Their two-point functions are

C5(x) = {(0e) (})a(0)) = — (tr[(De+ My 2D+ my)d] ). (3.1)
x) = (0190 (0)) = — (tr[(De+ my)gH(De + me)3] )
+2(tr(Do+ M)k tr(De -+ M)} ) — 2(tr(Do+my)t) (r(De+mg)od ) (3:2)

where the last term is added explicitly to subtract the vatwontribution. The corresponding
chiral susceptibilities are

Xo = 3 o0 == 3 {ir[(Pe mygkDe+myy] ) = ~ 5 (THDe+my) 2). (33
Xo = 3 Col0) = Yo+ oo {(THDec+my) 22— (Tr(De-+my) )7} (3.4)
Xaisc = Lg,lL {{ITr(De+mg) ™) = (Tr(De + mg) ™)} = (Xo — X5)/2 (3.5)

where the trace Tr sums over color, Dirac, and site indicesuil&ly, in the pseudoscalar chan-
nel, we have the flavor non-singlet,= uysd, dygu, f(uygu dygd) and the flavor singlet) =

f(uygu + dygd) and their corresponding chiral susceptibilities,

Xr =Y Cnl(x) = (De+mg)] 2, (3.6)

>Ch(x)

{{ITr(De+mg)Y2) = (Trys(De + mg) )} = (Xn— Xn)/2

L3L (Trlys

X X o {(Ts(0e g 42) = (Tr(@e+my) 7}, 37

X5.,disc = (3.8)

3L,
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Since the scalar and pseudoscalar correlation functieneetated bySU (2) x SUz(2) flavor
transformation, the restoration of chiral symmetry imgplibat

Xn=Xo, X&=Xn; (3.9)

which in turn givesxgisc = Xs disc for T > Tc andmg — 0.
SinceUa(1) transformation does not change the flavor quantum numbergestoration of
Ua(1) symmetry implies

Xn=Xs: Xo=Xn- (3.10)

If U(1)a is restored aly = Te, thenx; = X5 = Xo = Xn for T > T, and

nwo 0, T>T,
If Ua(1) symmetry is broken abovg, then there exists a windolg < T < Ty in which x; = Xo
and x5 = Xn, but Xz # X5 and X # Xn. If the chiral symmetry restoration (phase transition)
belongs to thé(4) universality class, then we expect

(Xn—Xn) ~ (T—=Te)"", y=1453 (3.12)

for T <T < Ty andmg — O.

4. Preliminary results

For each configuration, we use 249 noise vectors with dilution in the color and the Dirac
spaces (2& 3 x 4 = 240) to compute the chiral susceptibilities for each coméian, and then
obtain the average for each gauge ensemble. The chiralgilsiity in the chiral limit at each tem-
perature is obtained by linear extrapolation with 2-4 datats atmsea = 0.01,0.0150.02,0.03.

In Fig. 1 (a), we plot the dimensionless quantitiga:/T? = (Xo — X5)/(2T?) versusT, and iden-
tify its peak as the pseudo-critical temperatdie;- 172 MeV. In Fig. 1 (b), we plotx,— Xo)/T?
and (xn — X5)/T? versusT. It is evident that forT > T, both of them go to zero, which im-
plies that the chiral symmeti$U(2). x SU(2)r is restored foil > T, even though the magnitude
of (Xn — X5)/T? is much smaller tharix; — Xs)/T2. In Fig. 1 (c), we plot(x;— X5)/T2 and
(Xo —)(,,)/T2 versusT. We also observe that both of them decrease rapidly iasslightly higher
thanT., which implies that) (1), is restored al; ~ T.

Since the difference of any two chiral susceptibilities banwritten in terms of the spectral
density ofDg, e.g.,

anp
Xa_/ dAe nrg‘z‘Hz - 4.1)

which is dominated by the low-lying eigenmodesdf, we can examine the restoration of the
chiral symmetry and the axi&l (1) symmetry with the spectral densify(A¢) of the low-lying
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modes. To this end, we calculate the zero modes plus (180+«IBfugate pairs of the lowest-
lying eigenmodes of the overlap Dirac operator, for eackfigaration in the gauge ensembles.
Our procedures have been outlined in Ref. [10].

In Fig 2, we plot the eigenvalue densip(Ac) versusAc, for T [MeV] = 154(3), 172(2),
and 182(2) respectively, with corresponding sea quark esass, [MeV] = 11.5(2), 11.8(2), and
11.6(1), where the residual masses have been taken intardcdst T = 153(3) MeV, the eigen-
value distribution in the interval0.1,0.3] GeV is well fitted by a linear function with nonzero
intercept. The nonzero intercept implies that the chiraldemsate is non-vanishing and the chiral
symmetry is broken at this temperature. At= 172(2) MeV, the eigenvalue distribution in the
interval [0.1,0.3] GeV is well fitted by a linear function with zero intercept. i3lsuggests that
this temperature is close to the pseudo-critical tempegdiu At T = 1822) MeV, for A¢ in the
interval [0.1,0.3] GeV, the eigenvalue distribution cannot be fitted by lineaguadratic function,
but well fitted by the cubic functiony + c3A3 with co ~ 0. This suggests that the chiral symmetry
and thelJ (1), symmetry are both restored at this temperature, consigaiémthe degeneracies of
the chiral susceptibilitiesxt: ~ X5 ~ Xn =~ Xo) as shown in Fig. 1 (b) and (c). We also note that
the suppression of the low modesTat 182(2) MeV > T, satisfiesp(A¢) = c3A2, consistent with
the theoretical constraint obtained in Ref. [14] for thetoeation of theU (1)a symmetry in the
chirally symmetric phase.
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Figure 1: Differences of chiral susceptibilities versiis(a) to locate the pseudo-critical temperatliyg(b)
to probe the restoration of chiral symmetry, (c) to probertfstoration ofJ (1)4 symmetry.

5. Concluding remarks

Our preliminary results of the chiral susceptibilities ahd eigenvalue density of the 4D effec-
tive Dirac operator in two flavors lattice QCD with optimalrdain-wall fermion suggest that the
chiral symmetry and the (1) symmetry are likely to be restored at nearby temperatiies, Te,
in the chiral limit. This implies that the chiral phase triios in two flavors QCD in the chiral
limit could be first order, or second order in thg2) x U(2)/U(1)y universality class [15]. A
more precise determination @f andTy, with a finer scan ifT, and also with larger volumes, are
necessary to clarify this issue.

This work is supported in part by the National Science CduiiNds. NSC99-2112-M-002-
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Figure 2: The distribution of the eigenvalue 0+iD¢): (&) T < T¢, (B) T ~ T, (¢) T > Te. In (a) and (b), the
red line denotes the linear fit fo, € [0.1,0.3] GeV, while in (c) the cubic fity + c3A for A¢ in the same
range.
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