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After reviewing how simulations employing classical leg¢tigauge theory permit to test a conjec-
tured Euclideanization property of a light-cone Wilsongao a thermal non-Abelian plasma, we
show how Euclidean data can in turn be used to estimate theveeese collision kerneG(k, ),
characterizing the broadening of a high-energy jet. Festlts, based on data produced recently
by Paneret al, suggest thaE(k, ) is enhanced over the known NLO result in a soft regkmec
afewT. The shape ok3C(k, ) is consistent with a Gaussian at sriall
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1. Motivation

Among the main observables measured in heavy ion collistperéments are “hard probes”,
i.e. particle-like objects having an energy much largenttie temperature. Hard probes can either
be colour-neutral, such as photons, or coloured, such as jetthe case of photons, the probe
escapes the thermal medium unaltered, and its averagegtimurate reflects directly the physics
of the production mechanism. In the case of jets, in contthstprobe experiences a complicated
evolution, with the jet losing its virtuality to radiationits energy and longitudinal momentum
to radiation and collisions with the medium, but simultamsgy gaining transverse momentum
from collisions, leading to broadening. These phenomenga eoliectively be referred to as jet
qguenching; for reviews, see e.qg. refs. [1]-[7].

One quantity characterizing many of the mentioned prosassbe so-called transverse colli-
sion kernel, denoted @(k , ). Its appearance in the context of jet broadening is sketthsec. 2,
whereas a recent discussion of its role in photon produatambe found in ref. [8]. The focus
of the present study is a non-perturbative estimat€(&f ) with the help of lattice gauge theory,
following ideas put forward by Caron-Huot in the context ofLO computation [9].

2. Momentum broadening and the light-cone Wilson Loop

Let P(k,,L) be a probability distribution, normalized g—,{s%P(kl,L) = 1, of transverse
momenta of a jet, once it has traversed a path of lehgth1/nT within a medium of temperature
T. The classical nature &f could originate from decoherence due to many collisiongrgnand
longitudinal momenta are assumed hekggkn > miT, with 7T denoting a typical energy scale of
a relativistic plasma, but virtuality is small and will beghected in the following.

Considering a jet seeded by a quafkk, ,L) is given by a Fourier transform of a light-cone
Wilson loop in the fundamental representation (our disoustllows appendix D of ref. [6]):

P(XL>L) = NiCTr <WF(XL>L>t)> ) P(kL>L) = /dZXL e_iklxl P(XL>L)> (21)

wheret denotes time. Along the light-cones= L, so normally one argument is suppressed. In the
case of a jet seeded by a gluon, the Wilson loop is in the adjepresentationP(x, ,L) evolves

as
dP(x,,L)

dL
whereV (x, ) may be called a dipole cross section (we refer to it as a teasswpotential). The
transverse collision kernef(k, ), contains the same information¥$x, ) but in Fourier space:

- _V(XL)P(XLJ—) ’ (2-2)

V(x,) = /% (1—e”‘fXL>C(kL) . (2.3)

Consequently, the probability distribution of the trarseemomenta obeys

dP(k 2
% = /% C(ay) [Pk, —q;,L) —P(ky,L)] . (2.4)

In the following we refer to the extent of the Wilson loop tosather tharL.
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The goal is thus to extract the damping rate of a real-timesan¥illoop, eq. (2.2). A direct
determination with Euclidean lattice QCD is probably beyoeach because two analytic contin-
uations are needed [10]. On the other hand it has been ar§#uhf fork, < niT the dominant
contribution to the collision kernel resides in soft thermades, which are not sensitive to the ve-
locity of the seeding parton. A possible strategy is to ti#t seeding parton beyond the light cone
into the space-like domain upon which the associated Wilsop becomes amenable to Euclidean
methods. As a first step, we test this argument by making uséass$ical lattice gauge theory,
which correctly represents the physics of the soft gaugddfigll, 12]. A great advantage is that
classical simulations are carried out directly in real tigeniding any analytic continuation.

3. Classical lattice gauge theory

The Hamiltonian formalism [13] of classical lattice gaufedry is naturally formulated in a
fixed temporal gauga® = 0. Then its degrees of freedom, colour-electric fiigls- Ej-"‘Ta €su(3)
and spatial linkdJ; € SU(3), live on three-dimensional time slices. The theorpasametrized
by a single dimensionless numb@s = 2N./(g?Ta) with N the number of coloursy? = 4mas a
renormalized gauge coupling, aadhe lattice spacing, respectively. The Hamiltonian reads

3 3
=3 { 3 WIEFO) 4 5 5 TRy} @3.1)

whereR; denotes a plaquette in thg j)-plane. The associated local Gauss constr&@ipt) =
51 [Ei(x) —U;T (x =D Ei (x = 1)U (x — 1] singles out the physically admissib@&x) = 0 configura-
tions. The classical equations of motion read

adUj(x,t) = i(2N) 2Ej(x,t)Uj (x.t) | (3.2)
2\3

adEP(x,t) = —(— ) ImTr [TPUi(x,t) T ST (x,1)|, (3.3)
(2) mrfruiso 5 seo)

where§; denotes the staple in(& j)-plane which closes to a plaquette when muItipIied.Hy

Initial conditions are generated with the weidhU , E] O e PeHeiM,5(G(x)), by making use
of an algorithm described in ref. [14]. Subsequentlyand E are evolved in a forward Euler
leap-frog scheme with temporal lattice spacmg= a/100, based on egs. (3.2), (3.3). At each
integer step in timeé = na/v a copy of the gauge links is saved and a light-cone Wilsonine
constructed by appropriate averages of links above an@libwactual path as shown in fig. 1(left).
Monitoring the large-time behaviour of the Wilson loop, ansverse potential is subsequently
extracted from the exponential damping as in eq. (2.2) (n@w Ww— t),

V(x,) = — lim 2PXY

t—w P(XL,'[) (3.4)

The potential here is a function af as well as the velocity, as illustrated in fig. 1(left). (In
ref. [10] the same object was denoted-bymV, motivated by the time evolution e 'Et))

As an example of results that can be obtained, the transpetsatial extracted from simula-
tions with B; = 64 on aN® = 78° (adjoint rep., scaled wit./C, = 4/9) andN® = 96° (funda-
mental rep.) lattice is shown in fig. 1(right) as a functionxof For extracting the damping rate
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Figure 1: Left: A tilted lattice Wilson loop in Minkowskian spacetim®ight: The transverse potential in
the adjoint representation (darker symbols) for diffeneglocities atBs = 64 andN /s = 1.22, scaled by
4/9. The results for the fundamental Wilson loop [LON3; = 1.5 are given with the lighter symbols.

from eq. (3.4), a fitting range is needed that allows for a commise between signal strength on
one hand and an asymptotic exponential behavior of the Wiksmp on the other. Once a range is
chosen, a single exponential fit is deployed to measure tlie edV (x, ), with systematic errors
estimated from the variation of the results when moving ttiadi range to later times.

A central argument in the analysis of ref. [9] is that the cbntion to the thermal light-cone
Wilson loop from soft (colour-electric and colour-maguogtiauge fields should not be sensitive to
crossing the light cone. This argument can be tested througlsimulations: results for several
v are plotted in fig. 1(right). Quantitative changes are oleEtasv increases, but there does not
appear to be any qualitative transition in the dynamics/forl.

To summarize, classical lattice gauge theory simulatianmgpart the theoretical arguments
given in ref. [9] and give direct physical insight of the betwar of relevant observables in
Minkowskian spacetime, without complications related nalgtic continuation. For quantitative
results, however, the Euclidean results of ref. [15] aregaubed, because within classical lattice
gauge theory the Debye mass parameter cannot be tuned teiagihrggularization independent
value; it rather changes rapidly with the lattice spacing.

4. How to extract the transverse collision kernel

Suppose now that(x, ) has been computed non-perturbatively at distarees1/(gT ) with
simulations like those in ref. [15] and that a continuum titmks been taken. We may then try to
invert the relation between the potential and the transvendlision kernel, eq. (2.3), in order to es-
timateC(k, ) in the infrared domaik, < gT, in which perturbation theory is slowly convergent [9]
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(for k, <g?T/mthe problem becomes genuinely non-perturbative [16]). Ak by showing how
the inversion can be carried out in principle.

In the presence of an ultraviolet regularization, such astecé cutoff, the first factor on the
right-hand side of eq. (2.3) normalizes the potential t@z#rvanishing distance. Omitting this
overall normalization for the moment (it will be imposed irdidferent fashion in a moment),
eqg. (2.3) can formally be inverted through a Fourier tramsfo

C(kl) = —/dle eﬁikLXLV(XL) = —27'[/0 dXL XLJo(kLXL)V(XL) s (41)

where the angular integral was carried out, dnis a Bessel function. The asymptoticsJgf

ki x >>1 2 s
Jo(kix1) R \/ — COS(kLXL— Z) ) 4.2)

implies however that the integral is typically not absdiuteonvergent at large, . For example,
the non-perturbative asymptotics originating from thdémensional pure Yang-Mills theory obeys
the string-theory predicted asymptotics [17]

PTx >1
vix) TTE ox vt L (4.3)
XL

All of these terms decay too slowly for eq. (4.1) to be absjuintegrable. (The coefficient is
related to the overall normalization, as alluded to above.)

Itis possible, however, to subtract the problematic termabcarry out the inverse transform on
a faster decaying remainder. Concretely, making use a diimeally regularized Fourier transform,
2k, @oxe T(l-e—3%) 1

1
ariks / = : 4.4
[ki] (27'[)272‘€ kj r(%) 2v7-[1—eX172£fv (4.4)

which implies.Z[1/k, ] = 1/(2mx, ) as well as#[1/k3] = —x, /(2m), and tuningo, i, y such that

lim XL{V(XL)— [ax@;ﬁﬂ } o, (4.5)

X| —00
we obtain a subtracted version of the (inverse) Fourieisfam:

C(k o o
(2;) — E_%4-/0 dexLJo(kaL)[UXL+u+%—V(XL)} , k, >0. (4.6)

The integral here is convergent in a confining theory (predithat the potential does not diverge
too fast at short distances, which is not the case).

5. A first numerical test

In a practical setting, wheM(x, ) contains errors and is only known in a finite interval, it is
not cleara priori whether eq. (4.6) can yield useful results. The reason tsJgha oscillatory, so
a kind of sign problem (significance loss) takes place. Nbetgss the problem is less serious at
smallk, precisely the domain of most interest, so it appears wdrillevto carry out a test.
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For the test, we make use of the data of ref. [13}s an example, we consider the so-called
“cold” set (T =~ 400 MeV) at the lattice couplingg; = 14,16,18; thesefB;-values are chosen
as a compromise for which data extend both to short and lasgandes. The central values at
distances > ro, whererg ~ 2.2/¢? is the Sommer scale, are used jpZaminimization to determine
the parameters of eq. (4.5). (FBg = 14 this corresponds to the 6 largest distances;Bfor
16 to 5; forB; = 18 to 4.) Note that such a fit, at finite distances #dand with the colour-
electric “decorations” present in the Wilson loop, does metessarily reproduce the pure Yang-
Mills values [17], for instance we fingd> 0. Having fixed the parameters, eq. (4.6) is subsequently
estimated through

C(Z;) - % - % - % i; X=X ioa] [0 ) + 0% i 1)) (5.1)

wherei numerates the distances at which data is availahlg= 0, andg denotes the integrand:

(p(xl)zleo(kle)[axL+u+%—V(xl) , X, >0, (5.2)

»0) =vy. (5.3)

The definition in eq. (5.3) originates frody(0) = 1 and the observation theix, ) diverges more
slowly than ¥x, at short distances. In order to produce an error band, we deverated~ 100
mock configurations with the given central values and erfan® ref. [15], treating the errors at
variousx ; as independent from each other. Equation (5.1) is evaldatehch configuration, and
subsequently the central values and their variances agendieed as usual.

The result of this procedure is shown in fig. 2, together whia NLO result from ref. [9]. A
significant enhancement can be observekfor g2, whereg? ~ g?T is the effective coupling of
the dimensionally reduced “EQCD” effective theory. Rsincreases a significance loss becomes
visible; nevertheless, it seems conceivable that contapetturbation theory can eventually be
made fork, > me. It should be noted that at the temperature considered thgeDmass parameter
m (i.e. the electric scale) and the gauge coupligdi.e. the magnetic scale) are close to each
other: ref. [15] made use ofi = 1/0.44830@)° ~ 0.67¢?.

According to fig. 2k3C(k, ) is not unlike a Gaussian at small, with a height and curvature
given by the fit parametersr@, 41y, respectively. The stability of these results with resgect
adding data at smaller and larger distances needs, hovieWer carefully investigated.

6. Conclusions

We have provided evidence that the remarkable proposalf.ofgje namely that purely Eu-
clidean techniques allow to infer interesting real-tim@®imation in a certain “soft” regime, ap-
pears to stand firm. For definite numerical conclusions it lagl important to improve on the
determination of the transverse collision ker@&lk ), sketched in fig. 2, by taking the continuum
limit with the data of ref. [15] and exploring the systematitcertainties related to eq. (5.1).

This work was supported in part by SNF under grant 2000222340
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Figure 2: Left: The transverse collision kernel extracted from eql)®y making use of lattice data from
ref. [15], compared with the NLO result from ref. [9]. The@rband originates from simulated statistics as
described in the text. For numerical valuesgpf~ g°T see ref. [18]. Right: A rough estimate Btk ,L)
from egs. (2.1), (2.2), for the data set wh = 16 (the results are again increasingly unreliable agrows).
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