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1. Introduction

Conditions that create a quark-gluon plasma could also result in strong (electromagnetic) fields
of order O(10'4~13) T. (In GeV units 0.2 GeV?/e ~ 3 x 10'> T.) Examples are a noncentral heavy
ion collision or the primordial quark gluon plasma in the early universe. Such fields could alter the
crossover temperature, the equation of state, and other properties of the plasma.

Since our most reliable theoretical understanding about the properties of the quark-gluon
plasma in thermal equilabrium and low quark chemical potential comes from numerical lattice
QCD simulations, there has been a recent surge of interest in studying the thermal effects of
such fields. Work so far has focused on the chiral properties, e.g. (Yy) and the effect on 7,
[1,2,3,4,5,6,7]. These studies have required generating dedicated gauge field ensembles with an
explicit external B field. Our exploratory study aims to calculate the equation of state using lattice
QCD [8].

2. Taylor expansions

In our study we employ a Taylor expansion of the thermodynamic potential as a function of
the strength of the external B field to approximate the change in pressure due to the field. This
approach eliminates the need to generate dedicated gauge field ensembles with different B:
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Only even terms are nonzero because of CP symmetry. The first nontrivial term (second-order) is
ultraviolet divergent, so a zero temperature subtraction is needed. This step also renormalizes the
electric charge [9]. Not much is known about the convergence of the expansion, but D’Elia et al.
calculated (yy) and found that for eB<0.7 GeV?, the O(B*) correction is small [1, 2] However,
this calculation was done on a rather coarse lattice with fairly heavy quarks.

Lattice simulations are typically done on a torus. The convetional approach introduces a
constant uniform field throughout the lattice volume. To achieve uniformity and keep periodic
boundary conditions on the torus, it is necessary to quantize the field. For example with constant
B = B2, torus quantization with (quark charge |g| = |e|/3) requires |q|B = 27b/(L,Lya*) with in-
teger b € (0,L,L,/2). A typical choice for the continuum vector potential is

Ay = Bx, Ay=0 for pu==x271. (2.3)
On the lattice one can choose U (1) links so that the y links are
uy(B.q,X) = 9% 24)
for four-coordinate X = (x,y,z,¢), and the other links are

1 forx € [0,L, —2]

. 2.5
e~ i@ BLY for x — L,—1. (2.5)
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But quantization is unsuitable for a Taylor expansion. If the quantization condition is not met, the
field cannot be made uniform, which has a profound effect on physical observables.
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3. Half and half

The remedy we have been exploring introduces a uniform (positive) flux in half the lattice, and
the opposite flux in the other half:

B (x) =

{+B forx < L/2 G.1)

—Bforx>1L,/2

Because the return flux is introduced explicitly in a uniform way, no quantization is needed. In
effect, this set up introduces a constant electic current sheet at the two surfaces where the flux
reverses. Since physical phenomena are independent of the direction of the field, we expect that,
except for the boundary contribution, the two halves should contribute equally to changes in the
pressure, and the modified boundary condition should be harmless for sufficiently large volumes.
Of course, it becomes especially important to check for finite volume effects, which are probably
O(1/Ly).
We use the HISQ action with 2+ 1 flavors. The partition function is

Z(B) = /dUefsge%lndetM“(B,qu)e%lndetM‘l(B,qd)e%lndetM‘(B,qJ)_ 32)

where M/ is the HISQ/asqtad fermion matrix for flavor f, namely

M,y (B,qs) = amsSx y + DFy + Dy y (B,qp), (3.3)

where the B-independent term Dg}f is a sum of the Dirac operators in the £, £ and 7 directions at

all points. The third term includes the U (1) field (x' = x — L, /4 for x < L,/2, and X' = 3L, /4 —x
when x > L, /2):
1 F . 2n./
Dy y(Boar) = 3m(X) [US7 (05 8 gy

—l—U}(L) (X)e:;iqfasz/ 5X+3§’,Y —h.c.|. 3.4

Terms that depend on the B field are highlighted in blue.
The coefficients of the Taylor expansion are obtained from derivatives of the partition function:
9"IndetMy/(da’B)" 3.5
(9”Ter_1 /(da*B)" (for the interaction measure). (3.6)

They are, in turn, computed in terms of derivatives of the fermion matrix:

9"M/ (B,qy)

1 . n
2B = (%) |igr )OS (X) S5y

B=0
+ (3iqfx’)”U}EL) (X)ax+3)7’y - h.C.] .

Traces of these terms are calculated using stochastic estimators. The Taylor coefficients are then
assembled “off line.”
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Table 1: Results for the subtracted Taylor expansion coefficients. Listed are the temperature in MeV, the
gauge coupling B = 10/g>, the ratio of light to strange sea quark masses, the lattice dimensions at nonzero
and “zero” temperature, the number of random sources for the stochastic sample, and the subtracted first-
and second-order Taylor expansion coefficients.

T B my/my Vo Vr—o | Rand.sources | C}x 107 | C, x 1073
T#0|T=0

134 | 6.195 | 0.00440/0.0880 | 323 x 8 | 323 x 32 | 2400 400 | —1(7) —0.3(5)
154 | 6.341 | 0.00370/0.0740 | 323 x 8 | 323 x 32 | 2400 500 3(7) 0.44)
167 | 6.423 | 0.00335/0.0670 | 323 x 8 | 323 x 32 | 1200 200 | —4(7) 2.2(5)
167 | 6.423 | 0.00335/0.0670 | 483 x 8 | 483 x 48 | 1200 400 | —94) 2.3(5)
173 | 6.460 | 0.00320/0.0640 | 323 x 8 | 323 x 64 | 1200 200 | —6(8) 3.8(6)
227 | 6.740 | 0.00238/0.0476 | 323 x 8 | 48% x 48 | 1200 200 | —4(3) 10.4(8)
373 | 7.280 | 0.00142/0.0284 | 323 x 8 | 48% x 64 | 1200 40 0(7) 19.3(1.3)

4. Some technical details

We discuss two technical issues. The first has to do with toroidal restrictions on gauge in-
variance. There are many ways to define a vector potential for the same B field. On a torus these
choices define particular values for Polyakov loops. For example, with Ay, = Bx, when we integrate
along a loop at fixed x that closes at the y boundary, we have [Aydy = BL,x. Other choices of
vector potential, such as A, = B(x — xp) for nonzero xy give different values for the Polyakov loop,
but the same B field. Since the Polyakov loop is gauge invariant, these two vector potential fields
are not gauge equivalent, and can result in slightly different results for physical quantities. The
difference amounts to a change in boundary condition, and it is expected to become insignificant
for large volumes. In this example the difference is expected to decrease as exp(—MzLy).

The second technical issue has to do with charge renomalization. The vacuum pressure de-
pends on B. The zero temperature (vacuum) O(B?) term (divergent when a — 0) renormalizes the
electric charge, so we need at least to subtract it from the divergent nonzero temperature O(B?)
term [9]. We go further and just calculate the thermal contribution to the pressure change, which
removes the vacuum pressure entirely.

AP(BvT) :p(B,T)fp(O,T)fp(B,O)er(0,0) 4.1)
C5(T)(eB)?> +C4(T)(eB)*/T* + ..., (4.2)

where C,,(T) = C,(T) — Cy,(0).

5. Results

We present results of an exploratory calculation using a 2 4+ 1 flavor HISQ plus tree-level
Symanzik gauge action. Most of the gauge configurations in the study were provided by the
HotQCD collaboration. The lattice scale for these configurations is known [10]. We follow the
line of constant physics at fixed N; = 8 with sea quark masses m, = my = 0.05m;. So far we have



Quark-gluon plasma in an external magnetic field Carleton DeTar

Thermal contributions only
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Figure 1: Left panel: second order Taylor expansion coefficient as a function of temperature. The red square
is calculated at a larger volume and shows no significant finite volume dependence. Right panel: incremental
change in pressure as a function of temperature for various external magnetic fields. The dashed lines show
the hadron resonance gas values from [9]. They are computed to all orders in a Taylor expansion.

calculated terms in the presssure expansion only up to O(B?), i.e. the susceptibility. We have used
only 50 — 70 gauge configurations in each case. Results are tabulated in Table 4. These results
were obtained at a cost of about 30K GPU-hours.

The incremental change in pressure is shown as a function of temperature in Fig. 1. Note
that Ap is a rather small fraction (no more than a few percent) of the zero field pressure for fields
up to O(10T) ~ 0.1 GeV? /e relevant for heavy-ion collision experiments. For fields as high as
0(10'°T) =~ 1 GeV? /e, 20% or more.
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