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Recently much work has been devoted to the study of QCD cduple background magnetic

field. Strongly interacting matter acts as a magnetic mediachit is natural to study the proper-

ties of this medium, in particular to understand if it belslike a diamagnetic or a paramagnetic
material. A serious difficulty in studying these propertigsmeans of LQCD simulations is the

quantization of the magnetic field in a toroidal geometry. Wikkexpose a method to overcome

this difficulty and we will present data obtained for tNe = 2 theory that show that the QCD

medium is paramagnetic.
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1. Introduction

Magnetic field of intensities ranging from 10to 10"°16T are expected to be present in
such disparate environments as compact astrophysical objects (foetaesee.g[1]), the early
Universe (see.g[2]) and heavy ion collisions (semg. [3]). Since a magnetic field of intensity
10'5-16T corresponds toe|B ~ 1Ge\?, it is clear that its interaction can significantly affect the
properties of strongly interacting matter. As a consequence, in the lagei@s the interplay be-
tween strong and electromagnetic interactions have received much attéatiarcOmprehensive
review see the volume [4]).

For ordinary materials, the computation of the reaction to an external mageédicsfa stan-
dard problem of condensed matter physics. For non ferromagnetic nmebisarell magnetic fields,
the induced polarization is linear in the intensity of the external field and atitptare measure
of the reaction of the material is the magnetic susceptibility. It appears nauask the same
type of fundamental questions for the strongly interacting matter: doe<itlneearly to external
magnetic fields? If this is the case, what is the value of its magnetic susceptibilify&rticular,
is it a paramagnetic or a diamagnetic medium? Despite the simplicity and clear-awet oittuese
questions, it is nontrivial to answer them.

The standard tool for studying non-perturbative aspects of QCDndigsds the lattice formu-
lation of the theory and it is not difficult to add an external magnetic field to igwretized theory.
However, in a toroidal geometry (the one usually adopted in simulations teaedihite size ef-
fects), the magnetic field values are not arbitrary but get quantizeditivaty this is related to
the fact that when applying the Stokes theorem on a compact manifold witbontiary the result
must be independent of the surface used for the flux computation. dccerthis independence we
have to impose a relation between the admissible magnetic fluxes and the smaitasaétéharge
present in the theory. In the QCD case the smallest chage-ige|/3 and, assuming = BZ and
a 3D toroidal manifold, one gets the quantization condition [5]

|e|B = 671/ ((xly) , (1.1)

wherely, £y are the periods of the torus in tRgy directions and € Z. This quantization condition
is the main obstruction to a simple lattice answer to the previous questions.

In the following we will present the method developed in [6] to overcome tefeulties and
the results obtained by applying it to the caséNgf= 2 staggered fermions: strongly interacting
matter at finite temperature behaves as a linear paramagnetic medium arakawdinement, its
magnetic susceptibility is of the same order of magnitude of that characterigpialtygtrongly
paramagnetic ordinary materials (likgyliquid oxygen).

2. The method

The magnetic susceptibility and, more generally, all the magnetic propertieghoh@ge-
neous) medium, are related to the change of the free energy dénsity/V in presence of an
external magnetic field:

(2.1)

Af(B,T) = —\I/ log (Z(B’T’V)> ,

Z(0,T,V)
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whereZ = exp(—F /T) is the partition function. Since free energies are notoriously difficult to
compute by means of numerical simulations, the standard procedure totevahgnetic suscepti-
bilities in condensed matter simulations is to study the expectation value of thelsirirative of
f, which is a much better behaved observable than the magnetic free eeesitydThis is how-
ever not possible in the present setting, since the magnetic field is quamiteabaa consequence,
derivatives with respect tB of Eq. (2.1) are not well defined.

The basic idea of the method introduced in [6] is to extract the magnetic siliitypand the
other magnetic properties directly from the behaviour of free energgrdiftesf (by) — f(b1) =
f(B2) — f(B1) (whereby andb; are integers), which are computed by using the elementary formula

f(by) — f(by) = /bz 9tM) 4 2.2)

b, Jb
with the integrand function being evaluated on a grid of points in the int@svad,| (grid that have
to be fine enough for the errors associated to the numerical integrationuodee control). In
order to follow this strategy we have to analytically continue the functid), which is properly
defined only forb € Z, on the whole real axis, which is done in the following way.

An external magnetic field is introduced in Lattice QCD simulations by adding tSti8)
links variablesU,,(n) the non dynamical (1) phasesiy,(n) associated to the magnetic fields.
with the replacement, (n) — u,(n)U,(n). A simple choice for théJ (1) phases corresponding to
B=BzZise.g.

ud (n) = daBn. ( = d2mn/(Ldy) for theu fIavor>

. . (2.3)
U ()1, = €712 °ALEY ( = e 127/ for theu fIavor)

and uﬁf‘)(n) = 1 otherwise. In this expressianis the charge of the considered flavoly, L, are

the lattice extents in the y directions a is the lattice spacing and<l n, < L. The magnetic field

in the Z direction associated to the phases Eq. (2.3) is uniform only if the quantizadiwdition

Eq. (1.1) is respected, otherwise a singularity analogous to a Dirac stiregis in the continuum

limit. The analytical continuation required for the application of Eq. (2.2) isinbthby removing

the requirement thdi € Z in the expressions in Eq. (2.3). Since we work on finite lattices the free

energy densityf (b) is then an analytic function df and Eg. (2.2) can be safely applied.

We emphasize thal f (b)/db defined in such a way is not related in any direct way to the
magnetization of the system: the valueddf(b)/db (also for integeb) depends on the analytical
continuation adopted and it is thus devoid of any intrinsic physical valueonltg use is to be
integrated to extract the free energy finite differences through Eq), (®ti#ch are independent
of the analytical continuation used (for an explicit numerical check spea[@ are physically
meaningful as far als; andb, are integers.

OnceAf(B,T) has been computed by using Eqg. (2.2) we have to properly renormalize it,
in order to allow for a smooth continuum limit extrapolation. The only divergertbat do not
cancel in the differencAf are theB—dependent ones and it can be show that such divergences are
temperature independent (seg.[7, 8]). Motivated by this result and by the physical observation
that we are interested in the magnetic properties of the thermal medium andthos@of the
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vacuum, we adopted the renormalization prescription
Afr(B, T) =Af(B,T)—Af(B,0) . (2.4)

From the behavior oAfr(B, T) for small fields it is possible to verify that the medium is linear
and, eventually, to extract the value of its magnetic susceptibility by using

~ A

~_ X g2—_X ()2
AfgR~ ZHOB = 2(eB) : (2.5)
X is related to the standard SI magnetic susceptibility by the relgtiory /(1— X) and itis used in
order to properly take into account the fact that in our simulations the medismdiaack-reaction
on the magnetic field (see [6] for more details). The equivaleftiofnatural units iy defined by

the last equality in Eqg. (2.5) and the relation between the two susceptibilities is simpli/0.9¥ .

3. Numerical results

The method described in the previous section has been applied in [6] to tlyeo$tine mag-
netic properties olN; = 2 QCD. The theory was discretized by using the standard rooted stdggere
formulation and, althoughy, = my, isospin symmetry is explicitly broken by the interaction with
the magnetic field, sincg, = 2|e|/3 andgq = —|€e|/3.

To use Eq. (2.2) we need to measure the observable

. 401: . 1 0D(q) ( )71
=85b T ALyl o 2y, ({552 (3-1)

whereD@ is the Dirac matrix of the charggfermion andL,, is the lattice extent in the direc-
tion. M was evaluated by means of a noisy estimator, using for each measuredbnraectors.
Measures have been performed@(iL0°®) configurations generated by the usual RHMC algorithm
for each value of the parameters usiegl,for values of the pion mass in the range 20080 MeV
and for several values of the lattice spacing (for more details see Tdl§6]).0As our reference

T = 0 value for the renormalization subtraction we used the result obtainechunelyic lattices.

An example of the results obtained fdris shown in the left panel of Fig. (1). The oscillations
in the results are a clear signal of the unphysical natue @ind are related to the presence of
the unphysical string wheb is not an integer. Two different harmonics are visible in the result,
which can be associated to theandd contributions toM. Oscillations are nevertheless smooth
enough for the result to be numerically integrated. The integration, usimpte8mination oM
in each quantum, is performed by using a spline interpolation and a bootsiaéysia is used
to evaluate the numerical error. Several tests have been performesingydifferent integration
schemes, spline interpolations and numbeafieterminations; in all the cases compatible result
are obtained, which shows that the integration procedure is very stagdhe Supplementary
Material of [6] for more details).

Assuming the relatioa*Af = c,b? 4 ¢'(b*) to hold true for integeb values, a convenient way
to extract the coefficiert; is to study the differences

b

a4(f(b)—f(b—1))z/ M(B)db ~ ¢, (2b— 1) . (3.2)
b—1



The magnetic susceptibility in QCD

Claudio Bonati

T T
0.003}- | * 1616
v 16'x4
:
|

0.0012

0.0009

* 16'x16
v 16'x4
L 24’4

0.0006

£(b) - f(b-1)

00003~ R f

\
<y

AN
NS
— e
(N

o

Figure 1: Some results obtained with lattice spacag 0.188 fm and pion mass; ~ 480 MeV. (eft) M
computed on 16and 16 x 4 lattices together with third order spline interpolatipfight) f(b) — f(b— 1)
computed on 16 16° x 4 and 24 x 4 lattices together with the linear fit explained in the text.

This is convenient since in this way we do not need to compt@)/db on the whole[0, b]
interval but only on some quanta. This strategy also presents the adwdahgdghe integration
error does not correlate the measures on different quanta, whiisates are thus statistically
independent of each other.

Some data for these free energy differences, together with fits acgai@igq. (3.2), are
shown in the right panel of Fig. (1). From this figure it can be seen tlafitmicely works for
small enough magnetic field, and thus the strongly interacting medium is lineiée, fhgreater
b values deviations from Eq. (3.2) are visible. In all the cases we limited lbtwgle study of the
leading linear term, which is the one needed to extract the magnetic susceptibility.

By following this strategy both for the finit€ and theT = 0 data we arrive to the relation
a*Afr = crb? + 0(b*), wherecor = c(T) — c2(T = 0). The last step needed to extract the
magnetic susceptibility is just a conversion into physical units:

1

s )
182

18nh12

X = (LyLy)? 2R X= (LxLy)*cor - (3.3)

The data obtained fgy are shown in Fig. (2) (for the numerical data see Tab. 1 of [6]) andgesin
|X| < 1, we havex ~ X, wherey is the usual magnetic susceptibility in S| units.

Fig. (2) displays several interesting features. First of all we noticedétat do not show any
significant dependence on the lattice spacing and only slightly depend amlties of the pion
mass. The magnetic susceptibility is everywhere non negative, so we hawe shat strongly
interacting matter at finite temperature behaves as a paramagnetic medium.véidhesovalue
of the magnetic susceptibility in the explored range is of the same order of mdgmfuhat of
strongly paramagnetic ordinary materials, lig liquid oxygen. Another interesting feature of
Fig. (2) is the strong increasing of the magnetic susceptibility in the neighbodirbfcthe decon-
finement crossover, which for the masses used in this work is located iarte L66- 170MeV:
in the low temperature phase, data are much smaller that the ones in the d=tphise, and in
fact they are compatible with zero within errors.
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Figure 2: Final results for th&f magnetic susceptibility in Sl units.

4. Discussion and conclusions

In this proceeding we presented the method introduced in [6] to study thesth@groperties
of the finite temperature strongly interacting matter and the first results obtaynaplplying it to
the case oN; = 2 staggered fermions. This method is theoretically well founded and completely
non-perturbative, all the systematic errors can be analyzed indemtgnaed they turned out to be
well under control (see [6] for more details). The results obtained bynmeaother approaches
(see [9] and [10, 11]) give a qualitatively similar picture of the dependerf the magnetic suscep-
tibility on the temperature.

The most natural extension of the numerical results presented in thiseplingds the use of
improved discretizations and physical quark masses. This has beemdagby using 2+ 1 fla-
vors, a tree-level Symanzik improved action for the gauge fields, a stméring improvement for
the staggered fermions and physical values foutlteands masses. Higher values of the magnetic
susceptibility are obtained in this new setting, but the main features of Figer(®ins unaltered. It
was however possible to obtain a better signal to noise ratio in the confided phd, in particular,
to explicitly display the paramagnetic behaviour of the low temperature phlasseTesults are in
good quantitative agreement with the analogous ones reported in [1par@fular phenomeno-
logical relevance could be the observation that, near deconfinement, gmeticacontribution to
the pressure is a relevant fraction {5% for|e|B ~ 0.1 Ge\?, ~ 50% for |e|B ~ 0.2 Ge\?) of the
thermal contribution (see [12]) and could possibly induce even-bptditectuations (see [11]).
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