
P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
1
8
4

The magnetic susceptibility in QCD
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Recently much work has been devoted to the study of QCD coupled to a background magnetic

field. Strongly interacting matter acts as a magnetic mediumand it is natural to study the proper-

ties of this medium, in particular to understand if it behaves like a diamagnetic or a paramagnetic

material. A serious difficulty in studying these propertiesby means of LQCD simulations is the

quantization of the magnetic field in a toroidal geometry. Wewill expose a method to overcome

this difficulty and we will present data obtained for theNf = 2 theory that show that the QCD

medium is paramagnetic.
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1. Introduction

Magnetic field of intensities ranging from 1010 to 1015−16T are expected to be present in
such disparate environments as compact astrophysical objects (for magnetars seee.g[1]), the early
Universe (seee.g [2]) and heavy ion collisions (seee.g. [3]). Since a magnetic field of intensity
1015−16T corresponds to|e|B ∼ 1GeV2, it is clear that its interaction can significantly affect the
properties of strongly interacting matter. As a consequence, in the last fewyears the interplay be-
tween strong and electromagnetic interactions have received much attention (for a comprehensive
review see the volume [4]).

For ordinary materials, the computation of the reaction to an external magnetic field is a stan-
dard problem of condensed matter physics. For non ferromagnetic media and small magnetic fields,
the induced polarization is linear in the intensity of the external field and a quantitative measure
of the reaction of the material is the magnetic susceptibility. It appears naturalto ask the same
type of fundamental questions for the strongly interacting matter: does it react linearly to external
magnetic fields? If this is the case, what is the value of its magnetic susceptibility? In particular,
is it a paramagnetic or a diamagnetic medium? Despite the simplicity and clear-cut nature of these
questions, it is nontrivial to answer them.

The standard tool for studying non-perturbative aspects of QCD dynamics is the lattice formu-
lation of the theory and it is not difficult to add an external magnetic field to the discretized theory.
However, in a toroidal geometry (the one usually adopted in simulations to reduce finite size ef-
fects), the magnetic field values are not arbitrary but get quantized. Intuitively this is related to
the fact that when applying the Stokes theorem on a compact manifold without boundary the result
must be independent of the surface used for the flux computation. To enforce this independence we
have to impose a relation between the admissible magnetic fluxes and the smallest electrical charge
present in the theory. In the QCD case the smallest charge isq= |e|/3 and, assumingB = Bẑ and
a 3D toroidal manifold, one gets the quantization condition [5]

|e|B= 6πb/(ℓxℓy) , (1.1)

whereℓx, ℓy are the periods of the torus in thex,y directions andb∈ Z. This quantization condition
is the main obstruction to a simple lattice answer to the previous questions.

In the following we will present the method developed in [6] to overcome thesedifficulties and
the results obtained by applying it to the case ofNf = 2 staggered fermions: strongly interacting
matter at finite temperature behaves as a linear paramagnetic medium and, neardeconfinement, its
magnetic susceptibility is of the same order of magnitude of that characterizing typical strongly
paramagnetic ordinary materials (likee.gliquid oxygen).

2. The method

The magnetic susceptibility and, more generally, all the magnetic properties of a(homoge-
neous) medium, are related to the change of the free energy densityf = F/V in presence of an
external magnetic field:

∆ f (B,T) =−
T
V

log

(

Z(B,T,V)

Z(0,T,V)

)

, (2.1)
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whereZ = exp(−F/T) is the partition function. Since free energies are notoriously difficult to
compute by means of numerical simulations, the standard procedure to evaluate magnetic suscepti-
bilities in condensed matter simulations is to study the expectation value of the second derivative of
f , which is a much better behaved observable than the magnetic free energy density. This is how-
ever not possible in the present setting, since the magnetic field is quantized and, as a consequence,
derivatives with respect toB of Eq. (2.1) are not well defined.

The basic idea of the method introduced in [6] is to extract the magnetic susceptibility and the
other magnetic properties directly from the behaviour of free energy differencesf (b2)− f (b1) ≡

f (B2)− f (B1) (whereb2 andb1 are integers), which are computed by using the elementary formula

f (b2)− f (b1) =
∫ b2

b1

∂ f (b)
∂b

db , (2.2)

with the integrand function being evaluated on a grid of points in the interval[b1,b2] (grid that have
to be fine enough for the errors associated to the numerical integration to beunder control). In
order to follow this strategy we have to analytically continue the functionf (b), which is properly
defined only forb∈ Z, on the whole real axis, which is done in the following way.

An external magnetic field is introduced in Lattice QCD simulations by adding to theSU(3)
links variablesUµ(n) the non dynamicalU(1) phasesuµ(n) associated to the magnetic field,i.e.
with the replacementUµ(n)→ uµ(n)Uµ(n). A simple choice for theU(1) phases corresponding to
B = Bẑ is e.g.

u(q)y (n) = eia2qBnx

(

= ei 2πbnx/(LxLy) for theu flavor
)

u(q)x (n)|nx=Lx = e−ia2qLxBny

(

= e−i 2πbny/Ly for theu flavor
) (2.3)

andu(q)µ (n) ≡ 1 otherwise. In this expressionq is the charge of the considered flavour,Lx,Ly are
the lattice extents in thex,y directions,a is the lattice spacing and 1≤ nµ ≤ Lµ . The magnetic field
in the ẑ direction associated to the phases Eq. (2.3) is uniform only if the quantizationcondition
Eq. (1.1) is respected, otherwise a singularity analogous to a Dirac sting is present in the continuum
limit. The analytical continuation required for the application of Eq. (2.2) is obtained by removing
the requirement thatb∈ Z in the expressions in Eq. (2.3). Since we work on finite lattices the free
energy densityf (b) is then an analytic function ofb and Eq. (2.2) can be safely applied.

We emphasize that∂ f (b)/∂b defined in such a way is not related in any direct way to the
magnetization of the system: the value of∂ f (b)/∂b (also for integerb) depends on the analytical
continuation adopted and it is thus devoid of any intrinsic physical value. Itsonly use is to be
integrated to extract the free energy finite differences through Eq. (2.2), which are independent
of the analytical continuation used (for an explicit numerical check see [6]) and are physically
meaningful as far asb1 andb2 are integers.

Once∆ f (B,T) has been computed by using Eq. (2.2) we have to properly renormalize it,
in order to allow for a smooth continuum limit extrapolation. The only divergences that do not
cancel in the difference∆ f are theB−dependent ones and it can be show that such divergences are
temperature independent (seee.g. [7, 8]). Motivated by this result and by the physical observation
that we are interested in the magnetic properties of the thermal medium and not inthose of the
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vacuum, we adopted the renormalization prescription

∆ fR(B,T) = ∆ f (B,T)−∆ f (B,0) . (2.4)

From the behavior of∆ fR(B,T) for small fields it is possible to verify that the medium is linear
and, eventually, to extract the value of its magnetic susceptibility by using

∆ fR ≃−
χ̃

2µ0
B2 ≡−

χ̂
2
(eB)2 . (2.5)

χ̃ is related to the standard SI magnetic susceptibility by the relationχ = χ̃/(1− χ̃) and it is used in
order to properly take into account the fact that in our simulations the medium has no back-reaction
on the magnetic field (see [6] for more details). The equivalent ofχ̃ in natural units iŝχ defined by
the last equality in Eq. (2.5) and the relation between the two susceptibilities is simplyχ̂ ≃ 10.9χ̃.

3. Numerical results

The method described in the previous section has been applied in [6] to the study of the mag-
netic properties ofNf = 2 QCD. The theory was discretized by using the standard rooted staggered
formulation and, althoughmu = md, isospin symmetry is explicitly broken by the interaction with
the magnetic field, sincequ = 2|e|/3 andqd =−|e|/3.

To use Eq. (2.2) we need to measure the observable

M ≡ a4 ∂ f
∂b

=
1

4LtLxLyLz
∑

q=qu,qd

〈

tr
{∂D(q)

∂b
D(q)−1

}〉

, (3.1)

whereD(q) is the Dirac matrix of the chargeq fermion andLµ is the lattice extent in theµ direc-
tion. M was evaluated by means of a noisy estimator, using for each measure 10 random vectors.
Measures have been performed onO(103) configurations generated by the usual RHMC algorithm
for each value of the parameters used,i.e. for values of the pion mass in the range 200−480MeV
and for several values of the lattice spacing (for more details see Tab. 1 of [6]). As our reference
T = 0 value for the renormalization subtraction we used the result obtained on symmetric lattices.

An example of the results obtained forM is shown in the left panel of Fig. (1). The oscillations
in the results are a clear signal of the unphysical nature ofM and are related to the presence of
the unphysical string whenb is not an integer. Two different harmonics are visible in the result,
which can be associated to theu andd contributions toM. Oscillations are nevertheless smooth
enough for the result to be numerically integrated. The integration, using 16determination ofM
in each quantum, is performed by using a spline interpolation and a bootstrap analysis is used
to evaluate the numerical error. Several tests have been performed by using different integration
schemes, spline interpolations and number ofM determinations; in all the cases compatible result
are obtained, which shows that the integration procedure is very stable (see the Supplementary
Material of [6] for more details).

Assuming the relationa4∆ f = c2b2+O(b4) to hold true for integerb values, a convenient way
to extract the coefficientc2 is to study the differences

a4( f (b)− f (b−1))≡
∫ b

b−1
M(b̃)db̃ ≃ c2(2b−1) . (3.2)
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Figure 1: Some results obtained with lattice spacinga≈ 0.188 fm and pion massmπ ≈ 480 MeV. (left) M
computed on 164 and 163×4 lattices together with third order spline interpolations; (right) f (b)− f (b−1)
computed on 164,163×4 and 243×4 lattices together with the linear fit explained in the text.

This is convenient since in this way we do not need to compute∂ f (b)/∂b on the whole[0,b]
interval but only on some quanta. This strategy also presents the advantage that the integration
error does not correlate the measures on different quanta, whose estimates are thus statistically
independent of each other.

Some data for these free energy differences, together with fits according to Eq. (3.2), are
shown in the right panel of Fig. (1). From this figure it can be seen that the fit nicely works for
small enough magnetic field, and thus the strongly interacting medium is linear, while for greater
b values deviations from Eq. (3.2) are visible. In all the cases we limited ourself to the study of the
leading linear term, which is the one needed to extract the magnetic susceptibility.

By following this strategy both for the finiteT and theT = 0 data we arrive to the relation
a4∆ fR = c2Rb2 +O(b4), wherec2R = c2(T)− c2(T = 0). The last step needed to extract the
magnetic susceptibility is just a conversion into physical units:

χ̃ =−
|e|2µ0c
18h̄π2 (LxLy)

2c2R χ̂ =−
1

18π2 (LxLy)
4c2R . (3.3)

The data obtained for̃χ are shown in Fig. (2) (for the numerical data see Tab. 1 of [6]) and, since
|χ̃| ≪ 1, we haveχ ≈ χ̃, whereχ is the usual magnetic susceptibility in SI units.

Fig. (2) displays several interesting features. First of all we notice thatdata do not show any
significant dependence on the lattice spacing and only slightly depend on thevalue of the pion
mass. The magnetic susceptibility is everywhere non negative, so we have shown that strongly
interacting matter at finite temperature behaves as a paramagnetic medium. Moreover the value
of the magnetic susceptibility in the explored range is of the same order of magnitude of that of
strongly paramagnetic ordinary materials, likee.g liquid oxygen. Another interesting feature of
Fig. (2) is the strong increasing of the magnetic susceptibility in the neighbourhood of the decon-
finement crossover, which for the masses used in this work is located in the range 160−170MeV:
in the low temperature phase, data are much smaller that the ones in the deconfined phase, and in
fact they are compatible with zero within errors.
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Figure 2: Final results for thẽχ magnetic susceptibility in SI units.

4. Discussion and conclusions

In this proceeding we presented the method introduced in [6] to study the magnetic properties
of the finite temperature strongly interacting matter and the first results obtainedby applying it to
the case ofNf = 2 staggered fermions. This method is theoretically well founded and completely
non-perturbative, all the systematic errors can be analyzed independently and they turned out to be
well under control (see [6] for more details). The results obtained by means of other approaches
(see [9] and [10, 11]) give a qualitatively similar picture of the dependence of the magnetic suscep-
tibility on the temperature.

The most natural extension of the numerical results presented in this proceeding is the use of
improved discretizations and physical quark masses. This has been donein [12] by using 2+1 fla-
vors, a tree-level Symanzik improved action for the gauge fields, a stout smearing improvement for
the staggered fermions and physical values for theu, d andsmasses. Higher values of the magnetic
susceptibility are obtained in this new setting, but the main features of Fig. (2) remains unaltered. It
was however possible to obtain a better signal to noise ratio in the confided phase and, in particular,
to explicitly display the paramagnetic behaviour of the low temperature phase. These results are in
good quantitative agreement with the analogous ones reported in [11]. Ofparticular phenomeno-
logical relevance could be the observation that, near deconfinement, the magnetic contribution to
the pressure is a relevant fraction (∼ 15% for |e|B∼ 0.1GeV2, ∼ 50% for |e|B∼ 0.2GeV2) of the
thermal contribution (see [12]) and could possibly induce even-by-event fluctuations (see [11]).

Acknowledgements:We thank E. D’Emilio, E. Fraga and S. Mukherjee for useful discussions.
Numerical computations have been performed on computer facilities providedby INFN, in partic-
ular on two GPU farms in Pisa and Genoa and on the QUONG GPU cluster in Rome.
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