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reduction at finite temperature.
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1. Introduction

One of the most daunting problems in lattice field theory and computational physics is the so
called “sign problem” which severely restricts the application of otherwise powerful Monte Carlo
algorithms. A “sign (or phase) problem” might occur for two reasons. Firstly, the statistics of
the appearing fields might cause some configurations to carry a negative (fermions) or complex
(anyons) weight. In principle it is possible to consider suitable subsets of the configuration space
to end up with only non-negative weights [1] but finding the appropriate subsets may be highly
non-trivial. Secondly, the action itself can be complex leading to sign problems arising also in
bosonic systems. This may happen for example when a chemical potential is introduced. The
chemical potential couples to a conserved charge and breaks particle/anti-particle symmetry, which
renders the action complex. In order to have a conserved charge the Lagrangian needs to have a
continuous global symmetry, the simplest being a U(1) symmetry. One simple and well-studied
U(1)-symmetric model is the complex ϕ4-theory, which models a relativistic Bose gas. Complex
ϕ4 is also related to the Standard Model Higgs boson which is a two-component complex scalar
with a quartic self-interaction.

One promising method for dealing with the sign problem is Complex Langevin (CL) [2].
Furthermore, the sign problem can sometimes be avoided by a variable transformation (cf. world-
line Monte Carlo [3, 4]) but a suitable set of variables is not always easy to find. Mean Field
methods, although approximate, can most of the time use the symmetries of the Lagrangian to rotate
the fields and make the action real. Above the upper critical dimension mean field theories typically
yield fair predictions for local variables but usually over-emphasize the ordered phase. Another
shortcoming of mean field theory is that it can not be used to determine correlation functions and
can not be used to study finite temperature. EMFT [5, 6] is an extension of mean field theory which
incorporates a higher degree of self-consistency and can be used to overcome these limitations.

In this proceeding we apply EMFT to the U(1)-symmetric ϕ4-theory. In particular we study
the model at nonzero temperature and density, the main result being the (T,µ)-phase diagram. As
much as possible we compare our results with recent Monte Carlo [4] and complex Langevin [2]
results.

2. Lattice Action and Extended Mean Field Theory (EMFT)

EMFT [6] is based on the work of Pankov [5]. It is an extended version of mean field which takes
also some fluctuations into account. More precisely it resums all local diagrams contributing to
the free energy [5]. We have previously applied this approximation to the real scalar ϕ4-theory
with very good results [6]. This extended version of mean field is equivalent to the local limit of
Dynamical Mean Field Theory (DMFT) which is extensively used in the condensed matter com-
munity, see eg. [7] for a review. In DMFT the effective Weiss field is a function of one coordinate,
usually [Euclidean] “time” (hence the name), and emulates effective, nonlocal interactions. The ef-
fective model is a world line frozen in space and the effective field is determined self-consistently
by matching the 1d Green’s function to an approximation of the Green’s function of the full theory.
In the “local time” limit the world line is just one point and the effective field is a number. However,
this local limit is different from usual mean field since it contains an effective field which couples
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to ϕ2. Aarts [9] has also presented a mean field version of the complex Langevin equations which
involves the two-point correlator. His method explicitly takes a tadpole correction proportional to
λ into account and works well when λ is small. EMFT, on the other hand, resums local diagrams
to all orders in λ and works well for all values of the coupling [6].

We proceed by deriving the effective action and the self-consistency equations. We will write
the well-known lattice action of complex ϕ4-theory with chemical potential µ in d dimensions
using a slightly unconventional notation more convenient for our purposes,

S = ∑
x

[
−∑

ν
ΦΦΦ

†
x+ν̂EEE(µδν ,t)ΦΦΦx+

η
2
|ΦΦΦx|2+

λ
4
|ΦΦΦx|4

]
, (2.1)

with

ΦΦΦ
† = (ϕ∗,ϕ), EEE(x) =

(
e−x 0
0 ex

)
, η = m0 +2d. (2.2)

We see that in the free case (λ = 0) the action is quadratic in ΦΦΦ and the connected Green’s function
in Fourier space is readily obtained,

GGG0(k) =
〈
ΦΦΦΦΦΦ

†〉
c =

(
〈ϕϕ∗〉 〈ϕϕ〉
〈ϕ∗ϕ∗〉 〈ϕ∗ϕ〉

)
−〈ϕ〉2 =

(
η−2

d

∑
ν=1

cos(kν − iµδν ,t)

)−1

III2×2. (2.3)

This is a central point of EMFT and similar methods. We know the Green’s function at some point
in parameter space, here, λ = 0, and we can quantify the deviation of the full Green’s function
from the known one in the form of a function that only depends on the interaction, in this case λ .
The goal is then to find some simpler, but in some sense equivalent, model which we can solve
completely and which shares the same interaction-dependent deviation. In most cases we can only
find a simple model with an approximately equal deviation, or one which is only valid in some
limiting regime. In this spirit, we express the full lattice Green’s function as,

GGG−1(k) = GGG−1
0 (k)−ΣΣΣ(k), (2.4)

where ΣΣΣ is the self-energy due to λ . We will now as usual expand ΦΦΦ around its (real) mean,
〈ΦΦΦ〉=φφφ: ΦΦΦ =φφφ+δδδΦΦΦ. Concentrating on the field at the origin, ΦΦΦ0, we can write the action as,

S =
η
2
|ΦΦΦ0|2 +

λ
4
|ΦΦΦ0|4−2φφφT

ΦΦΦ0(d−1+ cosh(µ))

−∑
ν

(
δδδΦΦΦ

†
0+ν̂EEE(µδν ,t)δδδΦΦΦ0 +δδδΦΦΦ

†
0EEE(µδν ,t)δδδΦΦΦ0−ν̂

)
+Sext = S0 +δS+Sext, (2.5)

where the last term Sext does not depend on ΦΦΦ0 and is irrelevant to our purpose. The middle term
δS describes the interaction of the field ΦΦΦ0 at the origin, which we keep fully dynamical (“live”),
with the field at neighboring sites, ΦΦΦ0±ν̂ , which we collectively denote by ϕext and want to integrate
out. This is realized by replacing δS by its cumulant expansion

Z =
∫

dϕ0Dϕext e−S0(ϕ0)−δS(ϕ0,ϕext)−Sext(ϕext) =
∫

dϕ0 e−S0(ϕ0)−〈δS〉C,ext(ϕ0), (2.6)
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under the action Sext. Up to now everything is exact but in practice we will have to truncate the
cumulant expansion at some order. To second order in the fluctuation, δδδΦΦΦ0, it reads:

〈δS〉C,ext ≈
〈

∑
±ν

δδδΦΦΦ
†
ν̂EEE(±µδν ,t)δδδΦΦΦ0

〉
Sext

+
1
2

〈
∑
±ν

δδδΦΦΦ
†
ν̂EEE(±µδν ,t)δδδΦΦΦ0 ∑

±ρ
δδδΦΦΦ

†
ρ̂EEE(±µδρ,t)δδδΦΦΦ0

〉
Sext

= 0+
1
2

δδδΦΦΦ
†
0∆∆∆δδδΦΦΦ0 (2.7)

The first term is zero by construction and ∆∆∆ is a 2×2 unknown matrix which represents the second
term and will be determined self-consistently. Since ΦΦΦ has only two degrees of freedom (Reϕ and
Imϕ) so has ∆∆∆ which is why we can choose it to be real, symmetric and with ∆∆∆11 = ∆∆∆22. We restrict
ourselves to second order in δδδΦΦΦ for simplicity. In principle, expanding to higher order provides a
way to systematically improve the approximation. This second order term has a clear interpretation;
it represents all loops propagating in the external bath and closing at the origin. Making the above
substitution in Eq. (2.5) and using δδδΦΦΦ0 = ΦΦΦ0 +φφφ yields the effective, one-site action:

SEMFT =
1
2

ΦΦΦ
†
0 (ηIII−∆∆∆)ΦΦΦ0 +

λ
4
|ΦΦΦ0|4−2φRe[ϕ](2(d−1+ cosh(µ))−∆∆∆11−∆∆∆12). (2.8)

The EMFT Green’s function can, like the full Green’s function
〈

δδδΦΦΦ0δδδΦΦΦ
†
0

〉
, be defined as a

free part and a self-energy,
GGG−1

EMFT = ηIII−∆∆∆−ΣΣΣEMFT. (2.9)

The mapping is complete by neglecting the k-dependence of the full self-energy in Eq. (2.4) and
replacing it with the local, i.e. k-integrated self-energy which is approximated by the EMFT self-
energy ΣΣΣEMFT. This is justified since if we had taken the entire cumulant expansion in Eq. (2.7) then
the effective action would exactly correspond to the full theory and would generate all point-like
observables. Substituting ΣΣΣEMFT into Eq. (2.4) yields,

GGG−1(k)≈ GGG−1
EMFT +∆∆∆−2

d

∑
ν=1

cos(kν − iµδν ,t) III. (2.10)

∆∆∆ is self-consistently determined by demanding that the (approximate) local full lattice Green’s
function GGGxx =

∫ ddk
(2π)d GGG(k) equals the EMFT Green’s function. This is the same as finding the

stationary point of the (approximate) local free energy functional [8]. This, together with the self-
consistency of φ yields a set of three coupled self-consistency equations,

φ = 〈ϕ〉SEMFT
, (2.11)∫ ddk

(2π)d GGG(k) = GGGEMFT, (2.12)

where the matrix equation Eq. (2.12) contains two independent equations, one for the diagonal
element and one for the off-diagonal. The momentum integral turns into a finite sum in the case of
finite volume or temperature. Note that, as an output, one obtains an approximation to the Green’s
function via Eq. (2.10), in addition to 〈ϕ〉 and ∆∆∆. As usual when dealing with self-consistently
determined parameters we solve the above equations iteratively. There is, however, some freedom
in the choice of numerical procedure and some are more efficient than others. For more details, see
[6].
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Figure 1: (T/µc(T = 0),µc(T )/µC(T = 0)) phase diagram of complex ϕ4-theory at λ = 1 obtained by
EMFT and by world-line Monte Carlo [4]. We have used the same two values of η as in [4] and the results
agree very well for both.

3. Results

One very interesting advantage of EMFT over standard mean field theory is the possibility to study
finite temperature effects on the model in question. This is simply achieved by truncating the sum
over kt in Eq. (2.12) at some finite value of Nt . This allows us to define a temperature in lattice
units, aT = N−1

t , or in terms of the chemical potential, T/µ = ((aµ)Nt)
−1. We can then solve the

self-consistency equations and obtain all observables as a function of the temperature. The most
important result is perhaps the (T/µc,µ/µc) phase diagram which we show in Fig. 1. µc is defined
to be the critical chemical potential at zero temperature. We show the phase diagram for η = 9
and η = 7.44 to allow for a direct comparison with Monte Carlo results obtained by Gattringer and
Kloiber [4]. These authors used a world-line formulation of the partition function which has no sign
problem, and used Monte Carlo to sample the configuration space. We see an excellent agreement
at all temperatures and both values of η . We find µc(η = 9) = 1.1458 and µc(η = 7.44) = 0.1720
which should be compared with µc(η = 9) = 1.146(1) and µc(η = 7.44) = 0.170(1) found in [4].

Also quantitative comparisons of the density as a function of µ at different temperatures con-
firm the accuracy of EMFT. We compare again with the Monte Carlo simulations in [4] with λ = 1
and η = 9 and η = 7.44. The result is presented in Fig. 2. At the larger value of η (left panel)
the finite volume effects in the Monte Carlo data are small and the two methods agree almost per-
fectly with each other. Since the nonzero temperature contribution to the density is closely related
to the Green’s function at separation a, this shows that EMFT is not restricted to predicting the
local Green’s function Gxx. Closer to the continuum limit, at η = 7.44 (right panel), the finite-size
effects in the Monte Carlo data are more severe, which manifests itself as a rounding of the phase
transition. EMFT does not suffer from finite-size effects and shows a sharp transition. Away from
the transition the two methods agree very well.

3.1 First Order Transition

If we let µ come very near its critical value, EMFT incorrectly predicts that the transition
turns weakly first order as temperature is turned on. This can most easily be seen in Fig. 3 where
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Figure 2: The density n, as a function of µ for a few different temperatures at λ = 1 and η = 9 (left panel)
and η = 7.44 (right panel). We compare EMFT with Monte Carlo simulations [4] on an N3

s ×Nt lattice,
with Ns = 20 for η = 9 and Ns = 24 for η = 7.44. The temperatures correspond to Nt = 100(∞),5,2 and
Nt = 100(∞),10,6 for η = 9 and η = 7.44 respectively. In EMFT, we take Nt = ∞ instead of Nt = 100 for
computational convenience. The EMFT results are obtained in the thermodynamic limit, i.e. Ns = ∞.
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Figure 3: The expectation value of the field (left panel) and the correlation length (right panel), as a function
of µ for a few different temperatures at λ = 1 and η = 7.44. The curves are shifted vertically for readabil-
ity. At zero temperature we find a second order transition with mean field exponents but, as soon as the
temperature is turned on we find a weak first order transition.

we show the expectation value 〈ϕ〉 of the field and the correlation length ξ 2nd defined from the
second moment method. We see both that a jump in 〈ϕ〉 develops and that the critical exponents
change from mean field values to 1/d. However, we also find that the free energy is discontinuous
at the phase transition, so we conclude that the approximation fails and that the first order transi-
tion should be ascribed no physical meaning. Although EMFT still produces quantitatively good
predictions of various observables such as the critical chemical potential and the density, this is of
course an undesired feature. In order to cure this behavior we would be required to go to higher
orders in the cumulant expansion, Eq (2.7).

4. Conclusions

We have seen that EMFT works excellently in four dimensions at zero temperature where it
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correctly predicts a second order phase transition with mean field exponents and a quantitatively
very accurate value of the critical chemical potential. EMFT also provides a computationally cheap
method to probe the system at finite temperature, and although it incorrectly predicts a first order
transition we obtain observables like the critical chemical potential and the density which numer-
ically agree very well with state of the art Monte Carlo simulations [4]. This makes EMFT a
potentially very useful tool for making predictions on the existence and location of a phase transi-
tion. However, EMFT might have no predictive power regarding the order of previously unknown
phase transitions. Nevertheless, due to its simplicity and low computational cost, it can serve as a
complement to more sophisticated methods.

A natural and straightforward next step could be to study a model containing a multi-component
scalar field, for example a gauge-less SU(2) Higgs model. An even more interesting extension
would be to include the gauge field and study a U(1) Higgs model. Since the smallest gauge in-
dependent object, the plaquette, lives on four lattice sites we would have to extend the model to
work with a cluster of live sites, a direction which is interesting on its own since it allows for
self-consistent determination of momentum-dependent variables.
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