
P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
1
9
8

Towards a density of states approach for dense
matter systems

Kurt Langfeld∗†

Research Centre for Mathematical Sciences, Plymouth University, Plymouth PL4 9DE, UK,
E-mail: kurt.langfeld@plymouth.ac.uk

Jan Pawlowski

Institute for Theoretical Physics, University of Heidelberg, 69120 Heidelberg, Germany

Biagio Lucini

Department of Physics, Swansea University, Swansea SA2 8PP, UK

Antonio Rago

Research Centre for Mathematical Sciences, Plymouth University, Plymouth PL4 9DE, UK

Roberto Pellegrini

Dipartimento di Fisica dell’Università di Torino, 10125 Torino, Italy

The modified density-of-states method (LLR algorithm [1]) features an exponential error sup-
pression and is not restricted to theories with positive probabilistic weight. It is applied to the
SU(2) gauge theory at finite densities of heavy quarks. The key ingredient here is the Polyakov
line probability distribution, which is obtained of over 80 orders of magnitude. We briefly address
whether the exponential error suppression could be sufficient to simulate theories with a strong
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1. Introduction:

First principles simulations of QCD at finite baryon densities are an outstanding problem in
particle physics due to the notorious sign problem. Insights into the QCD phase diagram (as a
function of the chemical potential and the temperature) might be gained by considering the heavy
quark limit: for SU(Nc > 2), those theories are still hampered by a sign problem, but there are
indications [2] that the sign problem is less severe and solvable with recent techniques such as
worm type algorithms [3, 4], complex Langevin techniques [5, 6] or the fermion bag approach [7].
Monte-Carlo simulations with respect to the “density of states” [8] rather than the (potentially
complex) Gibbs factor might also be an interesting alternative to action based simulations [1, 9].

The starting point is the continuum formulation of SU(Nc) Yang-Mills theories with the chem-
ical potential µ for the heavy quarks with mass m. Using the heat-kernel approach, a systematic
expansion of the quark determinant in powers of 1/m yields the effective gluonic action (formulated
in terms of links Uµ ) [10]:

S[U ] = SYM[U ] + f p[U ], p[u] := ∑
~x

P(~x) (1.1)

where P(~x), the (traced) Polyakov line, and f is given by:

P(~x) =
1

Nc
tr

Nt

∏
t=1

U4(~x, t), f =
√

2π
−3/2(mT )3/2a3 exp{(µ−m)/T} , (1.2)

and where Nt is the number of links in temporal direction, a is the lattice spacing, T = 1/Nta
the temperature and SYM[U ] is the (Wilson) action of pure Yang-Mills theory. Note that the only
dependence on the spatial links is in the Wilson action of pure Yang-Mills theory. If we integrate
over these links in leading order strong coupling expansion, we obtain an effective theory that only
depends on the Polyakov lines and that features a nearest neighbour Polyakov line interaction.
The effective theory is the so-called SU(Nc) spin model [11, 4]. We here refrain from the strong
coupling expansion, but will consider the theory with action (1.1), which can be considered the
weak coupling version of the SU(Nc) spin model. For Nc = 3, this theory describes full QCD with
heavy quarks at finite densities.

Given the close relation between the Polyakov line and colour confinement, a quantity of
particular interest is the the Coleman effective potential for the Polyakov line. This potential is
defined as usual by means of the Legendre transformation of the generating functional:

V (q) =
T
V3

(µ q + j q − lnZ[J] ), q =
d lnZ[ j]

d j
= 〈p[U ]〉. (1.3)

Z[ j] =
∫

DUµ exp
{

SYM[U ]+ j∑
~x

P(~x)
}
. (1.4)

The generating functional Z[ j] would be obtained quite easily from the probability density ρ(q) for
finding a particular value for the (integrated) Polyakov line q:

ρ(q) =
∫

DUµ exp{SYM[U ]} δ

(
q −∑

~x
P(~x)

)
. (1.5)
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We find at least formally:

Z[ j] =
∫

dq ρ(q) exp{ j q} .

In practice, it is challenging to obtain a statistically viable result for the effective potential V (q)
(1.3). There are several reasons for that: (i) Obtaining ρ(q) by a standard histogram method
is extremely costly since the standard deviation of the distribution decreases with the volume.
For any value q significantly different from zero, a large number of independent configurations is
necessary, and one such configuration only produces one entry in the histogram. (ii) The jq term in
the Coleman potential (1.3) cancels to a great deal the j ∑~x P(~x) term in the generating functional
(1.4) as can be e.g. seen from a classical approximation. Those terms are extensive quantities and
are potentially large. This leaves us with a poor signal-to-noise ratio. (iii) For SU(Nc) > 2, P(~x)
is complex, and standard Monte-Carlo method are no longer viable because of a sign problem. In
the following, we will confine us to the SU(2) case for which the sign problem is absent. We will
resolve the issues (i) and (ii) by adopting a density-of-states approach that features an exponential
error suppression.

2. The density-of-states approach (LLR method)

Let us consider the partition function Z of a theory of the variable φ and action S[φ ]:

Z =
∫

Dφ exp{β S[φ ]} , (2.1)

where is a solid-state physics context β is the inverse temperature while in quantum field theory
β is interpreted as the inverse coupling strength. This partition function can be trivially rewritten
using the so-called density-of-states ρ:

ρ(E) =
∫

Dφ δ

(
E − S[φ ]

)
, (2.2)

Z =
∫

dE ρ(E) eβ E . (2.3)

Knowledge of ρ(E) reduces the calculation of the partition function to an ordinary integral. The
partition function is at the heart of many interesting quantities such as the thermal energy density,
pressure, latent heat (for theories with a 1st order phase transition) or interface tensions. However,
the integral (2.3) is a real challenge: β is usually of order 1 while the action E is proportional to
the lattice volume, which easily reaches a 100,000 for modest lattice sizes. It is only the lack of
states at high actions that renders the integral (2.3) finite. How do we calculate then ρ(E) with a
sufficient precision to obtain significant values for Z?

Figure 1 shows an actual result for the density-of-states ρ for the cases of a SU(2) and SU(3)
gauge theory. It appears that log10 ρ(E) is a remarkable smooth function over the whole action
range [0,Emax] with Emax = 60,000 for the present case. This motivates a piecewise linear Ansatz
for this quantity:

ρLLR(E) = ρ(E0) exp
{

a(E0)(E−E0)
}
, E0 < E < E0 +δE . (2.4)
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Figure 1: Left: The logarithm (base 10) of the density-of-states for a SU(2) and SU(3) lattice Yang-Mills
theory for a 104 lattice. Right: Probability distribution of the action for the compact U(1) theory for a 124

lattice.

The task is now to find the expansion coefficients a(E0), which can be interpreted as derivatives to
the partition function:

a(E0) =
1
Z

dZ
dE

∣∣∣
E=E0

.

Key ingredient to obtain a(E0) are truncated and re-weighted expectation values [1]:

〈〈 f (S[φ ])〉〉(a) =
1

N

∫
Dφ f (S) θ[E0,δE] e−aS[φ ] , (2.5)

θ[E0,δE] =

{
1 for E0 ≤ S[φ ]≤ E0 +δE ,

0 else,
N =

∫
Dφ θ[E0,δE] e−aS[φ ] .

The double-bracket expectation values can be evaluated using standard Monte-Carlo techniques:
configurations are generated with respect to the Gibbs factor exp{−aS[φ ]} and rejected if the target
configuration would produce an action that falls outside the allowed action window. Using the
definition of the density-of-states ρ(E) in (2.2), we can write:

〈〈 f (S)〉〉(a) =
1

N

∫
dE f (E) ρ(E)θ[E0,δE] e−aE . (2.6)

We now specialise to

f (S[φ ]) = S[φ ] −
(

E0 +
δE
2

)
=: ∆S[φ ] .

If the parameter a in (2.6) equals the exact value aex, we obtain:

〈〈∆S[φ ]〉〉(aex) =
1

N

∫
dE
(

E − E0−
δE
2

)
θ[E0,δE] = 0 . (2.7)

The latter equation can be solved for aex. If 〈〈∆S[φ ]〉〉(a) is positive, the a in the re-weighting factor
e−aS[φ ] is too small to compensate the exact density-of-states ρ . This suggests the fixed-point

4



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
1
9
8

Towards a density of states approach for dense matter systems Kurt Langfeld

Figure 2: Left: The (integrated) Polyakov line probability distribution for SU(2) and a N3×4 lattice. Right:
Probability distribution for the confinement (β = 2.2) phase and for the deconfinement phase (β = 2.4).

iteration (with a suitable chosen relaxation parameter λ > 0):

an+1 = an + λ 〈〈∆S[φ ]〉〉(an) , aex = lim
n→∞

an . (2.8)

Practical details on the implementation of the LLR algorithms will be presented in a forthcoming
publication. The calculation of a(E = E0) is then carried out for a range of action values E0 and
the the density-of-states ρ(E) is recovered from (2.4). The probability distribution for the action E
is then easily estimated from

P(E;β ) = ρ(E) exp{βE} .

Error bars can be obtained by the standard bootstrap method. Given the set of a values, this analysis
takes little time on a standard desktop making it feasible to explore a quasi-continuum of β values.
This is particularly interesting to locate a 1st order phase transition. Figure 1, right panel, shows
our findings for the compact U(1) gauge theory for a 124 lattice.

The above approach to the action density-of-states can be easily generalised to calculate the
probability distribution ρ(q) (1.5) for the (integrated) Polyakov line q. To this aim, we set:

Dφ = DUµ exp{SYM[U ]} .

The LLR method now generates a quasi-continuum of probabilities ρβ (q) exp{ j q} as a function
of the external source j. Note, however, that the generalised density-of-states ρβ (q) has to be
re-calculated for each Wilson coefficient β .

3. Numerical Results

The first simulations targeted the Polyakov line probability distributions ρβ (q) for a N3× 4
lattice for the confinement phase (β = 2.2). We have studied this distribution for several lattice
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Figure 3: Left: The Coleman effective potential in units of the temperature T for the SU(2) gauge theory
for a 163× 4 lattice for the confinement (β = 2.2) and the high temperature (β = 2.4) phase. Right: For
SU(2), the “baryon” (diquark) density as a function of the chemical potential µ in units of the heavy quark
mass chosen to match the charm quark in QCD.

sizes [12]. With the LLR algorithm, we quite easily obtain the distribution over hundreds of or-
ders of magnitude (see figure 2). Increasing the spatial value, decreases the width of the distribu-
tion. Also shown is a Gaussian fit to the data for N = 12 (see dashed line in figure 2, left panel).
We observe significant deviations from a Gaussian behaviour at large values q. We expect that
logρ(q) scales with the volume. To perform this consistency check using our numerical findings,
we rescaled the data for N = 12 to match with the data for N = 20. The re-scaled data (line in
figure 2) nicely fall on top of the data for N = 20 (green symbols).

We then studied the probability distribution in the deconfinement phase by using β = 2.4. The
result is shown in figure 2, right panel. Due to spontaneous symmetry breaking, the distribution is
suppressed for the “false vacuum” q = 0. The suppression of ρ(q = 0) increases with increasing
spatial volume resulting in a spontaneous breakdown of the centre symmetry in the infinite volume
limit.

Our numerical results benefit from the exponential error suppression of the LLR algorithm
making it possible to calculate the Coleman effective potential (1.3) by a direct Legendre transfor-
mation, Figure 3, right panel, shows our findings for a 163× 4 lattice. In the confinement phase
(β = 2.2) the data points almost quadratically raise with increasing q while in the high temperature
phase (β = 2.4) the potential is strongly suppressed for small q (in fact, vanishing in the infinite
volume limit due to spontaneous symmetry breaking).

Finally, we show the “baryon”, i.e., the diquark, density ρ as a function of the chemical po-
tential µ using the approximations leading to (1.1,1.2). We have chosen “physical” parameters
such as a string tension of 440MeV and a heavy quark mass matching that of the charm quark in
QCD. In the confinement phase, we observe a sharp rise of the density when the quark chemical
potential starts exceeding the quark mass gap. In the high temperature phase, we observe quite a
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significant density below the threshold. These contributions arise from temperature excitations of
single quarks over the mass gap. This needs to be contrasted with the confinement phase where a
diquark needs to be excited to obtain a contribution to the baryon density.
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