
P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
2
0
2

QCD at finite chemical potential with Nt = 8

Saumen Datta, Rajiv V. Gavai, Sourendu Gupta
Department of Theoretical Physics, Tata Institute of Fundamental Research,
Homi Bhabha Road, Mumbai 400005, India.
E-mail:
saumen@theory.tifr.res.in,gavai@tifr.res.in,sgupta@theory.tifr.res.in

Results from our simulations of QCD with two light dynamicalstaggered flavours of mass

m/Tc=0.1 are presented. Employing our earlier proposed Taylor series method for the baryonic

susceptibility, we estimate the radius of convergence by using terms up to the eighth order sus-

ceptibility, χ8. Comparing with earlier results on coarser lattices, we finda very good agreement

between theNt=8 and 6 lattices for its location in the (µB/T ,T/Tc) plane, suggesting any cut-off

effects to be encouragingly small.
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Nt = 8 Taylor expansion

1. Introduction

A major focus of many experimental programs in heavy-ion physics is the search for the
critical point. A successful search would yield the critical values of the temperature,T , and baryon
chemical potential,µB. Such experimental programs include the Relativistic Heavy Ion Collider
(RHIC) of BNL, New York or the upcoming FAIR facility at GSI, Darmstadt and NICA in Russia.
Many effective models for QCD, including the Nambu-Jona-Lasinio model and its extensions,
suggest the existence of a second order phase transition at finite chemical potential [1].

One might expect that the most reliable way to locate the critical point, if it exists, would be
through lattice computations. This obvious tool, when applied at non-zeroµB, is constrained by
formidable difficulties in addition to those encountered atµB = 0. Effective models suggest that
having two light flavours of quarks could be crucial for the existance ofthe critical point. The limit
of the strange quark becoming as light as the up and down quarks, in suchmodels may not yield a
critical point in theT -µB plane. Mostly simulations so far have employed staggered quarks. Due to
the importance of these results to the experimental programs mentioned before, it will eventually
be necessary to employ fermions with exact flavour and chiral symmetry on the lattice at arbitrary
µB. Recently, a lattice action with nonzeroµ and the same chiral symmetries as continuum QCD
has been proposed [2]. It will be interesting to compare its results with thosefor the staggered
quarks.

The biggest new challenge for simulations at finite density is the sign problem. This is not an
artifact of the lattice formulation, but is inherent in the continuum theory. Taking N f flavours of
quarks, and denoting their chemical potentials byµ f , the partition function for QCD can be written
as

Z =
∫

DU exp(−SG) ∏
f

DetM(m f ,µ f ), (1.1)

after integrating over the quarks fields. The thermal expectation value of an observableO is

〈O〉=
1
Z

∫

DU exp(−SG) ∏
f

DetM(m f ,µ f )O. (1.2)

The usual methods of numerical simulations require DetM to be real and positive for everyU .
Generally, however, DetM is a complex number forµ f 6= 0, although special lines can be found
in the space of these parameters where the product of determinants is real.This presents a major
block in extending the usual lattice techniques to the entireT -µB plane. Several approaches have
been proposed in the past decade to deal with it; two parameter re-weighting[3], imaginary chem-
ical potential [4], Taylor expansion [5], canonical ensemble method [6], and complex Langevin
approach [7]. We employ the Taylor expansion approach [5] to obtain theresults discussed here.

We have earlier presented results in full QCD with two flavours of staggered fermions of
massm/Tc = 0.1 onNt ×N3

s lattices, withNt = 4 andNs = 8, 10, 12, 16, 24 [8] and with a finer
lattice spacing usingNt = 6 with Ns = 12, 18, 24 [9]. We have checked the earlier results of the
MILC collaboration [10], which shows that our simulation parameters correspond tomπ/mρ =

0.31± 0.01, implying a Goldstone pion mass of 230 MeV. Here we present results on an even
finer lattice, 8×323, keeping mixed the ratiom/Tc = 0.1 fixed. As before, we used the peak of
the Polyakov loop susceptibility to define the reference couplingβc. Our determination ofβc is in
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Figure 1: Coefficients of the Taylor expansion of the baryon number susceptibility, up to the 6th order non-
linear susceptibility, at fixedβ as the number of source vectorsNv and the number of configurationsN are
varied. At least 500 vectors are needed to get reasonable estimates of the non-linear susceptibilities.

agreement with previous results [11], and has higher precision. Plaquette values were measured at
zero temperature at couplings corresponding to our finite temperature runs. These were used to set
the relative lattice spacing and thereby define the temperature scale. Our simulations covered the
temperature range 0.90≤ T/Tc ≤ 2.01. Typically 100-200 independent configurations, separated
by over 100 autocorrelation lengths were used to make measurements of physical quantities. This
is an update of very preliminary results which were presented one year ago [12].

The QCD pressureP has the following Taylor expansion

P(µ ,T )
T 4 −

P(0,T )
T 4 = ∑

nu,nd

χnu,nd (T )
1

nu!

(µu

T

)nu 1
nd !

(µd

T

)nd

(1.3)

where the indicesnu andnd denote the number of derivatives of the partition function with respect
to the corresponding chemical potentials. The quantitiesχnu,nd are generalized (non-linear) suscep-
tibilities. These are evaluated atµ f = 0. χ10 andχ01 are up and down quark number densities.χ20,
χ02 andχ11 are called quark number susceptibilities. We can setµu = µd = µB/3 andmu = md in
the expressions and so obtain a series for baryonic susceptibility from thisexpansion [8]. Its radius
of convergence is what we look for.

2. Controlling errors

The statistically hard part of the computations is to evaluate the trace of products of fermion
loops. It was pointed out earlier that the distribution of these quantities is strongly non-Gaussian,
even if the distribution of the trace of a single loop is taken to be Gaussian. Errors in the measure-
ments are controlled by two means: increasing the number of source vectors, Nv, used to evaluate
the fermion trace in each configuration, and the number of configurations,N. It turns out that
control over susceptibilities up to the 8th order requires us to use at leastNv = 1000. UnlessNv is
sufficiently large, increasingN is without commensurate value. Once errors in theχn’s are under
control, estimates of the radius of convergence also come under control.

However, continuation of physical variables into the region near the critical point remain
fraught with difficulties. Assume, for example, that we need an estimate of some quantity which
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has critical behaviour:f (z) = α(z− zc)
−γ . Assume also that there is a measurement ofzc with a

small error∆zc. If the error in evaluatingf (z) is ∆ f (z), then

∆ f (z)
f (z)

=
γ∆zc

z− zc
. (2.1)

So the error grows without bound asz → zc, i.e., in extrapolating towards the critical point. In
order to obtain results with a fixed accuracy near the critical point, the statistics required grows as
1/(z− zc)

2. This is the emergence of critical slowing down in Taylor expansion methods.This
argument can be put on a theoretically sound footing.

3. Lattice Results
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Figure 2: Comparison of baryon number susceptibility onNt = 8 with our earlier results onNt =6 and 4
(Left panel). Various 4th order susceptibilities on theNt = 8 lattice (Right).

The panel on the left in Fig. 2 gives a comparison of our new results for the Nt = 8 lattice for
baryon number susceptibility with those forNt = 6 and 4. At high temperature we also show lines
to indicate the ideal gas values with these cutoffs. A more detailed comparison with weak coupling
theory is given in the next section. The encouraging agreement betweenNt = 8 and 6 in the low-
temperature region, especially in the region where the critical point was located on the smaller of
the two lattices, suggests that the dimensionless ratios which we employ in all our critical point
determinations could possess a mild dependence on the lattice cutoff. The panel on the right shows
the various fourth order susceptibilities we determined for theNt = 8 case. The broad features are
essentially the same as observed on the coarserNt = 6 and 4 lattices.

Successive estimates for the radius of convergence are

rnm =

(

T n−2χn
B/n!

T m−2χm
B /m!

)1/(m−n)

(3.1)

We used terms up to 8th order inµ for doing so. A key point to note is that all coefficients of the
series must be positive for the critical point to be at realµ, and thus physical. If this condition
is statisfied then a reasonable estimate of the critical point,zc = µ/T , can be obtained only when
all the estimators are consistent with each other. The detailed expressions for all the terms, and
the methods we use to evaluate them, are available in [8]. Our earlier determination of the critical
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point onNt = 6 resulted from the constancy for both the ratios defined above atT/Tc = 0.94, with
all the susceptibilities being positive, leading [9] to the coordinates of the endpoint (E) –the critical
point–to beT E/Tc = 0.94±0.01, andµE

B /T E = 1.8±0.1 for that lattice.
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Figure 3: The radius of convergence estimates forNt = 8 (data) along with our final results for theNt = 8
(green band) and 6 critical chemical potential (cyan band) at the critical temperature ofTE/Tc = 0.94 (Left
panel). QCD phase diagram with all known lattice determinations for critical point (Right).

The panel in the left part of Fig. 3 displays our current estimates for theNt = 8, obtained by
using the method described above. The two solid bands indicate our critical chemical potential
estimates onNt = 8 (lower band) andNt = 6 (upper). Within the uncertainties of our measurement,
the critical value of the temperature remains the same on the two lattices. On the finer lattice we
see a minor shift to smallerµB, albeit within 1-σ , for the finer lattice. The panel on the right of the
figure collects together the new results, old results forNt = 6 [9] and 4 [8], and the estimate of the
critical point from the Budapest-Wuppertal collaboration [3], which used Nt = 4.

4. Susceptibilities at high temperature

The susceptibilities are physically interesting observables, as they are connected to correlations
and cumulants of quark number fluctuations [8, 13]. In this section we showsome susceptibilities
of second and fourth order atµB = 0, that go into the estimation of the critical point. The left
panel of Figure 4 shows the second order susceptibilityχ20 in the high temperature side of the
plasma, for temperatures> 1.1Tc. χ20 is proportional to baryon number fluctuation atµB = 0.
Here, unlike in Fig. 2, we have normalized the data by the free theory result,χSB,Lat

20 /T 2 = 1.473,
evaluated onNt=8 lattice. We expect that normalizing this way might eliminate a large part of the
cutoff effect at high temperature. In the same plot we also show results from finite temperature
resummed perturbation theory calculations for the same quantity in various resummation schemes:
hard thermal loop (HTL) scheme in leading (LO, Ref. [14]) and 3-loop order (NNLO, Ref. [15]),
as well as a calculation based on dimensionally reduced effective theory (DR, Ref. [14]). At our
higher temperatures,∼ 2Tc, the nonperturbative results are still not in agreement with the pertur-
bation theory results. While this could partly be due to cutoff effects in the latticecalculations, the
spread between the calculations in different resummation schemes (and different orders) indicate
that perturbation theory is not very reliable at these temperatures.

In the right panel of the figure, we show the off-diagonal susceptibilityχ11 in units of T 2.
This quantity is a marker of the correlation betweenu andd quantum numbers in the medium. As

5



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
2
0
2

Nt = 8 Taylor expansion

 0.6

 0.8

 1

 1.1  1.4  1.7  2

χ 2
0/

χS
B

20

T/Tc

DR

HTL, LO

HTL, NNLO

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 1  1.4  1.8  2.2

χ 1
1/

T
2

T/Tc

Figure 4: (Left) The second order susceptibilityχ20 for N f = 2. The results are shown normalized by
the lattice free theory resultχSB,Lat

20 . Also shown are results from various resummed perturbationtheory
calculations. (Right) The off-diagonal susceptibilityχud , plotted as function ofT 2.
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Figure 5: (Left) The fourth order nonlinear susceptibilityχ40 for N f = 2, normalized byχSB,Lat
40 ; also shown

are perturbation theory calculations. (Right) The off-diagonal nonlinear susceptibilityχ22, together with
perturbation theory calculation.

seen in the figure,χ11 is negative in the confined phase, but quickly approaches zero in the plasma.
In perturbation theoryχ11/T 2 ∼ g6 log g [16], so its smallness in the high temperature side is in
qualitative agreement with perturbation theory.

In Fig. 5 we show the behaviour of various nonlinear susceptibilities of fourth order in the
high temperature phase of the plasma. In the left panel we showχ40, normalized by the free
theory result forNt = 8 lattice,χSB,Lat

40 = 1.035. The nonperturbative results are seen to be within
the uncertainty band of the leading order HTL result at 2Tc, but slightly below the higher order
dimensionally reduced calculation. In the right panel the off-diagonal quantity χ22/T 2 is shown,
together with the results of Ref. [14] from a calculation based on dimensional reduction. Near 2
Tc the nonperturbative results are seen to be close to, but just outside, the uncertainty band of the
perturbation theory calculation.

5. Summary

We have presented lattice results for the non-linear quark and baryon number susceptibilities in
two-flavour QCD with light pions withNt = 8. We find indications from the Taylor series expansion
for the existance of a critical point. Our results for the location of this point is consistent with that
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obtained earlier usingNt = 6. This suggests that the continuum limit may be reached with little
change, and the current estimates of the critical point could be robust.

This work was done on the Blue Gene P of Indian Lattice Gauge Theory Initiative, Tata Insti-
tute (TIFR), Mumbai. We gratefully acknowledge financial and technical support of TIFR.
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