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1. Introduction

A major focus of many experimental programs in heavy-ion physics is thelséar the
critical point. A successful search would yield the critical values of the teatpe2,T, and baryon
chemical potentialpg. Such experimental programs include the Relativistic Heavy lon Collider
(RHIC) of BNL, New York or the upcoming FAIR facility at GSI, DarmstadtchNICA in Russia.
Many effective models for QCD, including the Nambu-Jona-Lasinio moddlienextensions,
suggest the existence of a second order phase transition at finite cheotés#ial [1].

One might expect that the most reliable way to locate the critical point, if it existgldabe
through lattice computations. This obvious tool, when applied at non{zgris constrained by
formidable difficulties in addition to those encounteredugt= 0. Effective models suggest that
having two light flavours of quarks could be crucial for the existandb@tritical point. The limit
of the strange quark becoming as light as the up and down quarks, imsdgis may not yield a
critical point in theT - ug plane. Mostly simulations so far have employed staggered quarks. Due to
the importance of these results to the experimental programs mentioned, litefolleeventually
be necessary to employ fermions with exact flavour and chiral symmetryedattite at arbitrary
Us. Recently, a lattice action with nonzegpand the same chiral symmetries as continuum QCD
has been proposed [2]. It will be interesting to compare its results with floosbe staggered
quarks.

The biggest new challenge for simulations at finite density is the sign problkimisinot an
artifact of the lattice formulation, but is inherent in the continuum theory.intak; flavours of
guarks, and denoting their chemical potentialgdpythe partition function for QCD can be written
as

z— /DU exp(—So) [[] Dem(mr 1), (1.1)

after integrating over the quarks fields. The thermal expectation valueaservable is
1
(6) = z/Du exp(~Sg) [ DeM(my, pt) 0. (1.2)
f

The usual methods of numerical simulations requireNDéb be real and positive for evety.
Generally, however, D& is a complex number fog; # 0, although special lines can be found
in the space of these parameters where the product of determinants iShisgbresents a major
block in extending the usual lattice techniques to the efitigs plane. Several approaches have
been proposed in the past decade to deal with it; two parameter re-weiffjtimgaginary chem-
ical potential [4], Taylor expansion [5], canonical ensemble methodd6§l complex Langevin
approach [7]. We employ the Taylor expansion approach [5] to obtairethdts discussed here.
We have earlier presented results in full QCD with two flavours of staggimmions of
massm/T. = 0.1 onN; x Ns3 lattices, withN; = 4 andNs = 8, 10, 12, 16, 24 [8] and with a finer
lattice spacing usingl; = 6 with Ng = 12, 18, 24 [9]. We have checked the earlier results of the
MILC collaboration [10], which shows that our simulation parameters spoad tom;/m, =
0.31+0.01, implying a Goldstone pion mass of 230 MeV. Here we present results @vem
finer lattice, 8x 328, keeping mixed the ration/T, = 0.1 fixed. As before, we used the peak of
the Polyakov loop susceptibility to define the reference cougindur determination of; is in
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Figure 1: Coefficients of the Taylor expansion of the baryon numbecepisbility, up to the 6th order non-
linear susceptibility, at fixe@ as the number of source vectddg and the number of configuratiohsare
varied. At least 500 vectors are needed to get reasonabieatss of the non-linear susceptibilities.

agreement with previous results [11], and has higher precision. Rtayadues were measured at
zero temperature at couplings corresponding to our finite temperatwgeThase were used to set
the relative lattice spacing and thereby define the temperature scale. Olatgimaicovered the
temperature range®0 < T /T, < 2.01. Typically 100-200 independent configurations, separated
by over 100 autocorrelation lengths were used to make measurementssafgblgyantities. This
is an update of very preliminary results which were presented one yedt 2

The QCD pressurP has the following Taylor expansion

ng!
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T4 T4 (1-3)
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where the indices, andng denote the number of derivatives of the partition function with respect
to the corresponding chemical potentials. The quantiigs, are generalized (non-linear) suscep-
tibilities. These are evaluated @t = 0. x10 and xp1 are up and down quark number densitigs,

Xoz2 and x11 are called quark number susceptibilities. We canuget Hg = pg/3 andm, = my in

the expressions and so obtain a series for baryonic susceptibility froexipesision [8]. Its radius

of convergence is what we look for.

2. Controlling errors

The statistically hard part of the computations is to evaluate the trace of psoafuermion
loops. It was pointed out earlier that the distribution of these quantities isgdyroon-Gaussian,
even if the distribution of the trace of a single loop is taken to be Gaussiaorsknrthe measure-
ments are controlled by two means: increasing the number of source vé¢toused to evaluate
the fermion trace in each configuration, and the number of configuratingt turns out that
control over susceptibilities up to the 8th order requires us to use aiNgasfi000. UnlesN, is
sufficiently large, increasiny is without commensurate value. Once errors inhe are under
control, estimates of the radius of convergence also come under control.

However, continuation of physical variables into the region near the drigimt remain
fraught with difficulties. Assume, for example, that we need an estimatenoé santity which
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has critical behaviourf (z) = a(z—z;)"Y. Assume also that there is a measuremerg ofith a
small errorAz.. If the error in evaluating (z) is Af(z), then

Af(z)  yDz
f(z0 z—z’

(2.1)

So the error grows without bound as— z., i.e., in extrapolating towards the critical point. In
order to obtain results with a fixed accuracy near the critical point, the statisticiired grows as
1/(z—z)?. This is the emergence of critical slowing down in Taylor expansion methdts
argument can be put on a theoretically sound footing.

3. Lattice Results
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Figure 2: Comparison of baryon number susceptibility Bpn= 8 with our earlier results ohk =6 and 4
(Left panel). Various 4th order susceptibilities on te= 8 lattice (Right).

The panel on the left in Fig. 2 gives a comparison of our new results éd¥;tk- 8 lattice for
baryon number susceptibility with those fidyr = 6 and 4. At high temperature we also show lines
to indicate the ideal gas values with these cutoffs. A more detailed comparioweak coupling
theory is given in the next section. The encouraging agreement betweeB and 6 in the low-
temperature region, especially in the region where the critical point watelboa the smaller of
the two lattices, suggests that the dimensionless ratios which we employ in alitozal oint
determinations could possess a mild dependence on the lattice cutoff. Tél@pdie right shows
the various fourth order susceptibilities we determined folNhe 8 case. The broad features are
essentially the same as observed on the coddser6 and 4 lattices.

Successive estimates for the radius of convergence are

T—2y0/nl 1/(m-n)
I’nm:<XB/ >

TmfZXIan/m! (3-1)

We used terms up to 8th order infor doing so. A key point to note is that all coefficients of the
series must be positive for the critical point to be at reabhnd thus physical. If this condition
is statisfied then a reasonable estimate of the critical print, /T, can be obtained only when
all the estimators are consistent with each other. The detailed expressiclkthe terms, and
the methods we use to evaluate them, are available in [8]. Our earlier determiogtie critical
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point onN; = 6 resulted from the constancy for both the ratios defined abovg¢&t= 0.94, with
all the susceptibilities being positive, leading [9] to the coordinates of theanid E) —the critical
point-to beTE /T, = 0.94+0.01, anduf /TE = 1.8+ 0.1 for that lattice.
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Figure 3: The radius of convergence estimatesKpe= 8 (data) along with our final results for ting = 8
(green band) and 6 critical chemical potential (cyan bahthecritical temperature ol /Tc = 0.94 (Left
panel). QCD phase diagram with all known lattice deterniomestfor critical point (Right).

The panel in the left part of Fig. 3 displays our current estimates foNthe 8, obtained by
using the method described above. The two solid bands indicate our crhieadical potential
estimates oiN; = 8 (lower band) andl; = 6 (upper). Within the uncertainties of our measurement,
the critical value of the temperature remains the same on the two lattices. On thiattice we
see a minor shift to smallgrg, albeit within 1, for the finer lattice. The panel on the right of the
figure collects together the new results, old resultdNos 6 [9] and 4 [8], and the estimate of the
critical point from the Budapest-Wuppertal collaboration [3], whichdise= 4.

4. Susceptibilitiesat high temperature

The susceptibilities are physically interesting observables, as they areated to correlations
and cumulants of quark number fluctuations [8, 13]. In this section we sbhave susceptibilities
of second and fourth order @ = 0, that go into the estimation of the critical point. The left
panel of Figure 4 shows the second order susceptibiityin the high temperature side of the
plasma, for temperatures 1.1 T.. X2 is proportional to baryon number fluctuation a = O.
Here, unlike in Fig. 2, we have normalized the data by the free theory rggfit,/T2 = 1.473,
evaluated om\;=8 lattice. We expect that normalizing this way might eliminate a large part of the
cutoff effect at high temperature. In the same plot we also show resaits finite temperature
resummed perturbation theory calculations for the same quantity in variauamesgtion schemes:
hard thermal loop (HTL) scheme in leading (LO, Ref. [14]) and 3-loaeo(NNLO, Ref. [15]),
as well as a calculation based on dimensionally reduced effective tHeBiyRef. [14]). At our
higher temperaturesy 2T, the nonperturbative results are still not in agreement with the pertur-
bation theory results. While this could partly be due to cutoff effects in the latsitmilations, the
spread between the calculations in different resummation schemes (aar@mtifbrders) indicate
that perturbation theory is not very reliable at these temperatures.

In the right panel of the figure, we show the off-diagonal susceptibityin units of T2.
This quantity is a marker of the correlation betweesndd quantum numbers in the medium. As
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Figure 4. (Left) The second order susceptibilipgpo for Ny = 2. The results are shown normalized by
the lattice free theory resujt;s"*. Also shown are results from various resummed perturbatienry

calculations. (Right) The off-diagonal susceptibiljg, plotted as function of 2.
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Figure5: (Left) The fourth order nonlinear susceptibilifyo for Ny = 2, normalized by(fg‘m; also shown

are perturbation theory calculations. (Right) The offgginal nonlinear susceptibility,,, together with
perturbation theory calculation.

seen in the figureyy; is negative in the confined phase, but quickly approaches zero in gtraala
In perturbation theory:1/T? ~ @ log g [16], so its smallness in the high temperature side is in
qualitative agreement with perturbation theory.

In Fig. 5 we show the behaviour of various nonlinear susceptibilities atlioorder in the
high temperature phase of the plasma. In the left panel we shewnormalized by the free
theory result fol\; = 8 lattice, x;5" = 1.035. The nonperturbative results are seen to be within
the uncertainty band of the leading order HTL result & 2but slightly below the higher order
dimensionally reduced calculation. In the right panel the off-diagonahtity x»2/T? is shown,
together with the results of Ref. [14] from a calculation based on dimerisiedaction. Near 2
T. the nonperturbative results are seen to be close to, but just outsidenaieainty band of the

perturbation theory calculation.

5. Summary

We have presented lattice results for the nhon-linear quark and barpapemsusceptibilities in
two-flavour QCD with light pions witi\; = 8. We find indications from the Taylor series expansion
for the existance of a critical point. Our results for the location of this poinbisistent with that



N; = 8 Taylor expansion

obtained earlier usinfjly = 6. This suggests that the continuum limit may be reached with little
change, and the current estimates of the critical point could be robust.

This work was done on the Blue Gene P of Indian Lattice Gauge Theorytivatidata Insti-
tute (TIFR), Mumbai. We gratefully acknowledge financial and technigppert of TIFR.
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