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We present a finite size scaling study for 3 and 4-flavor QCD with nonzero quark chemical po-
tential by the grand canonical approach. We employ the Wilson-clover fermions and adopt the
phase reweighting method where the phase factor is computed exactly. In 4-flavor study, we show
the finite size scaling study for the moments of various physical quantities, which demonstrates a
typical behavior of the 1st order phase transition as well as the crossover or weak 1st order phase
transition. For 3-flavor theory, we study the critical end point in the bare parameter space spanned
by the hopping parameter, the gauge coupling and the chemical potential.
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1. Introduction

The 4-flavor theory is known to be a good testing ground to study QCD phase diagram with
finite density [1, 2, 3, 4] since the phase structure of the 4-flavor theory is expected to be very
similar to that of the 3-flavor theory. For example, Fig.1 (left) is an expected phase diagram for
the low flavor theory in the massless limit where a 1st oder phase transition line is connecting the
temperature and the chemical potential axis. By increasing the quark mass, the 1st order phase
transition at zero density becomes weaker while the transition at zero temperature is expected to
remain 1st order, therefore the 1st order transition line turns into a crossover and then a critical
end point appears at some chemical potential as shown in the right panel of Fig.1. In 4-flavor
case, however, it is empirically known that the 1st order phase transition at zero density persists
even in relatively heavy mass region [5]. Therefore the critical end point is likely located near the
temperature axis with small chemical potential compared with that of the low flavor case. Then
the analysis of the critical end point should be easier with less sign problem. Furthermore, since
the parameter space we are interested in is in heavy mass region, the simulation cost should be
reasonable.

In this report, the moment analysis for 4-flavor theory is given and we show some typical
examples for 1st order phase transition and crossover/weak 1st order phase transition. The details
of the analysis can be found in Ref.[6]. The Lee-Yang zero analysis by using the same data set is
reported in [7]. We also present a preliminary study of the 3-flavor theory especially focusing on
the determination of the critical end point.

μ

T

μ

T

Figure 1: Expected phase diagram at the massless limit (left) and relatively heavy mass (right).

2. Simulation setup

We adopt the grand canonical approach and use the phase reweighing method to avoid the
complex action problem. The gauge configurations are generated by following the phase-quenched
QCD partition function,

Z||(µ) =
∫
[dU ]e−SG |detD(µ)|Nf , (2.1)

where the quark mass and chemical potential are set to be identical for all flavors and Nf is the
number of flavor. The lattice action is a combination of the Wilson-clover fermion action and the
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Iwasaki gauge action. For both Nf = 3 and 4, we use the clover coefficient csw which is non-
perturbatively tuned for Nf = 3.

The physical quantities are estimated by the reweighting formula,

⟨O⟩=
⟨OeiNfθ ⟩||
⟨eiNfθ ⟩||

. (2.2)

The complex phase is computed by using the reduction technique proposed in Ref.[8] with addi-
tional improvements and obtain the phase exactly. GPGPU played crucial role to accumulate large
statistics in this hot spot of the calculation.

3. Simulation results for Nf = 4

In the Nf = 4 study, the temporal lattice size is fixed at NT = 4 and two sets (called light mass
and heavy mass) of parameters are used as follows:

β κ aµ N3
L mπ/mρ T/mρ

light mass 1.58 0.1385 63 −103 0.02−0.30 0.822 0.154
heavy mass 1.60 0.1371 63 −83 0.10−0.35 0.839 0.150

3.1 Phase reweighing factor

Fig.2 is the phase-reweighting factor as a function of aµ for the light mass and heavy mass
cases. This quantity is useful to see a situation of the sign problem. For large µ and large volume,
the value tends to be close to zero then the sign problem is getting harder as expected. Nevertheless,
it stays away from zero in some region, thus phase reweighing is still useful there. There are a dip
and hump for both masses and they are considered as an effect of transition of QCD and phase
quenched QCD respectively and the reasoning is given in [6].
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Figure 2: The phase reweighting factor as a function of aµ for light mass (left) and heavy mass (right) case.
The band is µ-reweighted result.
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3.2 Susceptibility

Fig.3 is the volume scaling of susceptibility peak. For lighter mass, we can clearly see a linear
volume dependence and this suggests a 1st order phase transition and the crossover is strongly
excluded. For heavy mass, all fitting forms are consistent with the data and it is very hard to
distinguish between the cross over and very weak 1st order phase transition. Thus we cannot draw
a clear conclusion with our current volume.
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Figure 3: The volume scaling of the susceptibility peak for plaquette value. The left (right) panel is for light
(heavy) mass case.

3.3 CLB cumulant

To consolidate a conclusion about the order of the transition, we show another quantity, Challa-
Landau-Binder cumulant [9, 10], defined by

UX = 1− 1
3
⟨X4⟩
⟨X2⟩2 , (3.1)

for a physical quantity X . This also has a criteria for the strength of transition like here.

lim
V→∞

Umin =

{
2/3 : crossover

others : 1st order phase transition
(3.2)

Fig.4 is a volume scaling for the minimum of CLB cumulant associated with the plaquette average.
The light mass case shows a clear 1/V scaling and the minimum value in the thermodynamic limit
is significantly different from 2/3, therefore it is consistent with the previous susceptibility analysis.
For heavy mass case, it is again difficult to draw a clear distinction between the crossover and 1st
order phase transition with our volumes.

3.4 Global picture of phase diagram

Let us see what present results can tell us about the phase diagram depicted in Fig. 1. To obtain
global picture of the phase diagram, we made additional simulations at aµ = 0 with κ = 0.1380
and 0.1371, while varying β to search for transition points. And then it turns out that

(β ,κ,aµ) =

{
(1.59997(11),0.1380,0) strong 1st order phase transition,

(1.61848(12),0.1371,0) very weak 1st order/cross over.
(3.3)

4



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
2
0
3

Finite size scaling for 3 and 4-flavor QCD with finite chemical potential Shinji Takeda

 0.663

 0.664

 0.665

 0.666

 0.667

 0.668

 0  0.001  0.002  0.003  0.004  0.005

1/10
3

1/8
3

1/7
3

1/6
3

m
in

im
u
m

 o
f 
U

P

1/V

β=1.58

2/3
u0[1-u1/V]

2/3[1-u1/V+u2/V
2
]

u0[1-u1/V+u2/V
2
]

 0.663

 0.664

 0.665

 0.666

 0.667

 0.668

 0  0.001  0.002  0.003  0.004  0.005

1/10
3

1/8
3

1/7
3

1/6
3

m
in

im
u
m

 o
f 
U

P

1/V

β=1.60

Figure 4: The volume scaling of the minimum of CLB cumulant for plaquette value. The left (right) panel
is for light (heavy) mass case.

In addition to the above points, the transition points at finite density

(β ,κ,aµ) =

{
(1.58,0.1385,0.1459(20)) strong 1st order phase transition,

(1.60,0.1371,0.2053(21)) very weak 1st order/cross over.
(3.4)

are plotted in the phase diagram of Fig. 5. At zero density, along the transition line, continuity
suggests that a strong 1st order transition at stronger couplings (lower-right corner of the figure)
weakens toward weaker couplings (upper-left corner). To understand the phase diagram related to
finite densities in terms of physical observables, we calculate mπ/mρ , and linearly interpolate lines
of constant mπ/mρ . We pick specifically mπ/mρ = 0.822 and 0.839 evaluated at the transition
points at finite densities, and show these two lines in the figure as green and magenta lines, respec-
tively. A crossing point of such a constant mπ/mρ line and the zero density transition line (black)
gives us an estimate of the location of the zero density thermal transition at the value of mπ/mρ ,
which in turn tells us the relative strength of the transition there.

In Fig. 5, at the intersection of the black and the green lines, which has a stronger coupling
than our simulated point (open square) at zero density, we expect a strong 1st order transition,
which continues to aµ = 0.1459(20) (filled square), for light mass system with mπ/mρ = 0.822(2)
along the green line. Therefore, the phase diagram for mπ/mρ = 0.822(2) looks like the left panel
of Fig. 1.

On the other hand, for the system with heavy mass mπ/mρ = 0.839(2), we have argued that
it has either a weak 1st order transition or a quick cross-over at aµ = 0.2053(21) (filled diamond).
Extending toward the zero density (black) line, the system appears at much weaker coupling than
our simulated weak transition point (open diamond), and is likely to have an even weaker transition
or a quick cross-over. The phase diagram for mπ/mρ = 0.839(2) is, therefore, possibly consistent
with the right panel of Fig. 1.

4. Simulation results for Nf = 3

Our purpose for Nf = 3 study is slightly different from the 4-flavor case and it is to identify
the location of the critical end point at the finite density. A strategy to search for the critical end
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Figure 5: The phase diagram in the bare parameter space. The black line is the transition line at zero density.

Figure 6: A strategy to search for the critical end point at finite density.

point is sketched in Fig.6. First, we identify the location of the critical end point at zero density
whose details are given in a contribution of proceedings of Lattice 2013 [12]. Then by switching
on the chemical potential, we trace the critical end point which draws a line in the 3-dimensional
bare parameter space, we call it critical end line. At fix aµ = 0.1, we basically follow the same
procedure at zero density, namely in the κ-β plane, we identify the transition line (A-B line in
Fig.6) by varying κ for each β .

The 3-flavor simulation was done on the lattice with NT = 6, NL = 8,10,12. The left panel
of Fig.7 is the volume scaling of the susceptibility peak for the gauge action density along the
transition line. This shows that along the transition line from the strong coupling to weak coupling
the 1st order phase transition turns into crossover and this is consistent with the scenario in Fig.6
(from A to B). Therefore there should be a critical end point in between β = 1.70 and 1.77. In order
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to precisely identify the location of the critical end point, we adopt the kurtosis (Binder cumulant)
intersection method [11]. This method tells that if individual lines for each volume cross each other
then the position where the crossing occurs is considered to be the critical end point. In the right
panel of Fig.7, the lines for NL = 8 and 10 have a crossing point while 10 and 12 do not have a
clear one. It seems that we need more points of β and larger volumes to identify the critical end
point.
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Figure 7: The volume scaling of the susceptibility peak for gauge action density (left). The intersection of
kurtosis for gauge action density (right).
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