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1. Introduction

Lattice QCD simulations for nonzero quark chemical potential µ are challenging topics. The
γ5-hermiticity ensures the fermion determinant det∆ to be real at µ = 0. The nonzero quark chem-
ical potential breaks the γ5-hermiticity, and allows the fermion determinant to be complex. The
complex determinant causes the breakdown of Monte Carlo simulations, so called sign problem.

Recently, there are advances in lattice QCD simulations for finite density QCD especially for
high temperature and small density regions of the QCD phase diagram. The sign problem is mild
in the QGP phase. In addition, several approaches have been developed, such as Taylor expansion,
analytic continuation with imaginary chemical potential, canonical approaches, etc, which allow to
test the validity of an approach by comparing it to others. It was shown that several approaches are
consistent for µ/T < 1. Lattice simulations are to some extent tractable for this region.

In contrast, lattice QCD simulations are difficult for low-T and finite µ regions. Several quanti-
ties, such as the fermion determinant, quark number density, Polyakov loop decrease with decreas-
ing temperature. The calculation of them suffers from small signal-to-noise ratio. The fermion
determinant becomes less sensitive to µ at lower temperatures, which also makes it difficult to
investigate the µ-dependence of quantities.

In such a situation, it is useful to consider the zero temperature limit. In previous studies [1, 2,
3], we have developed an approach to take the zero temperature limit of the fermion determinant,
where we considered T = 0 by taking Nt → ∞. The approach is based on the reduction formula
of the fermion determinant [4, 5, 6, 7, 8, 9, 10]. It offers a way to calculate the temporal part of
the fermion determinant analytically and transforms the determinant into an analytic function of
quark chemical potential µ . The formula incorporates a reduced matrix (propagator matrix), which
controls the µ-dependence of the fermion determinant. Investigating the eigenvalues of the reduced
matrix, we found that they obey a scaling law with regard to the temporal lattice size Nt . Using
the Nt-scaling law, it turned out that the fermion determinant is independent of µ for small µ . The
eigenvalues of the reduced matrix are also related to meson masses [4, 11]. We showed that the
fermion determinant is independent of µ for µ < mπ/2 for T = 0. The same result was previously
obtained for continuum case by Cohen[12]. Our study provides a complementary understanding of
the previous studies from the viewpoint of the zero temperature limit of lattice QCD.

In this article, we report our recent studies on the properties of lattice fermions at zero temper-
ature and small quark chemical potential.

2. Reduction Formula and Reduced Matrix

2.1 Formulation

We employ the clover-improved Wilson fermions with two flavor and renormalization group-
improved gauge action. The Wilson fermion matrix ∆ is given by

∆(µ) = B−κ

[
e+µa(1− γ4)U4(x)δx′,x+4̂ + e−µa(1+ γ4)U

†
4 (x
′)δx′,x−4̂

]
, (2.1)
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where κ is the hopping parameter. µ and a are quark chemical potential and lattice spacing. B is
the spatial part of the Wilson fermion matrix,

B = δx,x′−κ

3

∑
i=1

[
(1− γi)Ui(x)δx′,x+î +(1+ γi)U

†
i (x
′)δx′,x−î

]
−κ CSW δx,x′ ∑

µ≤ν

σµνFµν , (2.2)

where CSW is the clover coefficient. We introduce two block-matrices

αi =Bab,µσ (~x,~y, ti) rσν
− −2κ rµν

+ δ
ab

δ (~x−~y), (2.3a)

βi =
[
Bac,µσ (~x,~y, ti) rσν

+ −2κ rµν

− δ (~x−~y)
]
Uab

4 (~y, ti), (2.3b)

where indices a,b, and c are color indices, and µ , ν and σ are Dirac indices. r± = (1± γ4)/2. αi

describes a spatial hop of a quark at t = ti, while βi describes a spatial hop at t = ti as well as a
temporal hop to the next time slice.

Using a reduction formula, det∆(µ) is transformed into [9]

det∆(µ) = ξ
−Nred/2C0 det(ξ +Q) , (2.4a)

Q = (α−1
1 β1) · · ·(α−1

Nt
βNt ), (2.4b)

C0 =
Nt

∏
i=1

det(αi), (2.4c)

where ξ = e−µ/T , and Nred = 4NcN3
s . Nc and Ns are the number of colors and spatial lattice size.

Q, which we refer to as the reduced matrix, describes the propagation of a quark from the initial to
final time slices, see Fig. 1.

Figure 1: A diagram of the propagation of a quark described by the matrix Q. It is analogous
to a Polyakov line P(straight line). Each plane denotes a spatial plane at a fixed time.

With λn(n = 1,2, · · ·Nred) denoting eigenvalues of Q, det∆ is given by

det∆(µ) =C0ξ
−Nred/2

Nred

∏
n=1

(λn +ξ ). (2.5)

Q and C0 depend only on link variables and not on µ for a given configuration. The effect of µ is
included only in ξ in Eqs. (2.4a) and (2.5). Once C0 and λn are obtained, values of det∆(µ) can be
obtained for arbitrary µ .
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Figure 2: The scatter plot of eigenvalues on the complex λ plane for Nt = 4 and Nt = 8. The
same parameters were used except for Nt ; κ was fixed with a LCP of mPS/mV = 0.8 [13],
and β = 1.86 corresponding to T = Tc for Nt = 4 and T = Tc/2 for Nt = 8 at µ = 0.

2.2 Properties of reduced matrix

Figure 2 shows the eigenvalue distribution on the complex plane for Nt = 4 (T/Tc ∼ 1) and
Nt = 8 (T/Tc ∼ 0.5). Here, we use the data of λn obtained in the previous lattice QCD simulation
for two-flavor clover-improved Wilson fermions [1]. Eigenvalues are generally complex, and its
distribution is of Z(3) approximately. This is naturally understood from the analogy between the
reduced matrix and Polyakov line.
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Figure 3: The histogram of the magnitude of the eigenvalues for Nt = 4 and Nt = 8. Left
panel: original, right panel : scaled. Left and right peaks correspond to S and L, respectively.

Figure 3 shows the histogram of ln |λn|(left panel). The eigenvalue distribution is symmetric
with regard to |λ |= 1. This follows from the fact that the eigenvalues of the reduced matrix form
pairs; if there is λ , then it has a partner 1/λ ∗. Then, they are divided into two groups S = {λn||λn|<
1,n = 1,2, · · · ,Nred/2} and L = {λn||λn|> 1,n = 1,2, · · · ,Nred/2}.

No eigenvalue is observed near |λn|= 1. The size of the gap is given by the eigenvalue nearest
to the unit circle, maxλn∈S λn or its pair. Gibbs pointed out that this eigenvalue is related to the pion
mass for Nt → ∞. Hence, the size of this gap is expected to be nonzero for nonzero quark mass.

The eigenvalues follow a scaling law with regard to the temporal lattice size Nt , although the
magnitude of the eigenvalues strongly depends on Nt , as shown in Figs. 2 and 3. The histogram of
ln |λn| depends on Nt , while the scaled histogram of (ln |λn|)/Nt is almost independent of Nt , see
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Figure 4: The magnitude of the eigenvalues in descending order for Nt = 4 and Nt = 8 for
β = 1.86. There are Nred = 83×12 = 6144 eigenvalues. The left panel shows the spectrum
for |λn|, while the right panel shows the scaled eigenvalues |λn|1/Nt .

right panel of Fig. 3. The spectrum shown in Fig. 4 also manifests this behavior, see the spectrum
of |λn| (left panel) and |λn|1/Nt (right panel). These results mean that the magnitude of λn is scaled
as |λn| ∼ lNt

n , where ln(∈ R) is independent of Nt . We consider the small eigenvalues S below, and
they can be denoted as λn = exp(−εnaNt + iθn), with ln = exp(−εna). Here εn is also independent
of Nt , but depends on a. Using T = (aNt)

−1, the small eigenvalues are rewritten as

λn = exp(−εn/T + iθn). (2.6)

This scaling is physically natural according to the analogy between the reduced matrix and Polyakov
line.

Note that |λn| approaches to unity as εn decreases. Because there is the gap in the eigenvalue
distribution, εn has the minimum value given by εmin =−T maxλn∈S |λn|,

3. Fermion Determinant and Quark Number at T = 0

Now, we consider the zero temperature limit of the fermion determinant. We rewrite Eq. (2.5)
using the pair nature of the eigenvalues as

det∆(µ) =C0

Nred/2

∏
n=1

(λ ∗n )
−1(1+λnξ

−1)(1+λ
∗
n ξ ), (3.1)

where the index n runs over the small eigenvalues λn ∈ S. Using the Nt-scaling law Eq. (2.6), we
obtain

det∆(µ) =C0

Nred/2

∏
n=1

(λ ∗n )
−1(1+ e−(εn−µ)/T+iθn)(1+ e−(εn+µ)/T−iθn). (3.2)

We consider the zero temperature limit by taking Nt → ∞ with a fixed lattice spacing a and fixed
spatial volume N3

s . Equation (3.2) is described in terms of the small eigenvalues which have positive
εn(= −T ln |λn|). Hence, e−(εn+µ)/T vanishes for Nt → ∞. On the other hand, e−(εn−µ)/T goes to
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0 or ∞, depending on the sign of εn−µ . Because there is an inequality e−(εmin−µ)/T > e−(εn−µ)/T ,
e−(εn−µ) vanishes for all the eigenvalues at T = 0 for µ < εmin. In this case, we obtain

det∆(µ)
Nt→∞
= C0

Nred/2

∏
n=1

(λ ∗n )
−1,(µ < εmin). (3.3)

Thus, the fermion determinant is independent of quark chemical potential µ at T = 0 for µ < εmin.
Next, we need to determine εmin. As we have mentioned, the magnitude of the gap is related

to the pion mass. Gibbs found a relation [4]

amπ =− 1
Nt

max
λn∈S

ln |λn|2, (3.4)

for Nt → ∞. Later, Fodor, Szabó and Tóth proposed thermodynamic considerations for hadron
spectroscopy, and derived a relation [11]

amπ =− 1
Nt

ln
〈∣∣∣∣∑

λn∈S
λn

∣∣∣∣2〉. (3.5)

The two expressions are expected to become consistent at T = 0, because maxλn∈S λn dominates Q
for Nt →∞. εmin is identified with mπ/2 at µ = 0. Since the fermion determinant is independent of
µ for µ < εmin, then εmin and mπ remain unchanged for µ <mπ/2. Hence, the relation εmin =mπ/2
is valid for µ < εmin.

In this way, the µ-independence of the fermion determinant in lattice QCD is obtained by
using the reduction formula, and Nt-scaling law of the eigenvalues of the reduced matrix, and the
relation between the pion mass and the reduced matrix.

3.1 Quark number operator

The approach can be applied to the quark number operator

n̂ =
T
Vs

(det∆(µ))−1 ∂ det∆(µ)

∂ µ
, (3.6)

where Vs is the spatial lattice volume Vs = N3
s . Using Eq. (3.1), we obtain

n̂ =
1
Vs

Nred/2

∑
n=1

(
λnξ−1

1+λnξ−1 −
λ ∗n ξ

1+λ ∗n ξ

)
. (3.7)

Substituting Eq. (2.6) and ξ = e−µ/T , we can rewrite n̂ as

n̂ =
1
Vs

Nred/2

∑
n=1

(
1

1+ e(εn−µ)/T−iθn
− 1

1+ e(εn+µ)/T+iθn

)
. (3.8)

This is analogous to a Fermi-distribution function. Because Q describes a temporal quark line and
has winding number one, εn is considered as an energy level of single quark. Here Eq. (3.8) is
the operator, and therefore n̂ and εn describe the Fermi-distribution function and energy levels of
single quark for each configuration, respectively. In this sense, they are microscopic quantities, and
different from physical quantities defined for ensemble average.
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For Nt → ∞, e(εn−µ)/T and e(εn+µ)/T go to ∞ if µ < εmin. We get

n̂(µ) = 0 for µ < εmin. (3.9)

Thus, we obtained that the quark number density operator is zero at T = 0 for small µ in the
viewpoint of lattice QCD.

4. Summary

We showed that the fermion determinant is independent of quark chemical potential for µ <

mπ/2. The reduction formula provides the analytic dependence of the fermion determinant on µ ,
and the eigenvalues of the reduced matrix characterizes its µ-dependence. Using the Nt-scaling law
of the reduced matrix, the fermion determinant is reduced to the µ-independent form in the zero
temperature limit. The relation between the pion mass and reduced matrix was used to determine
the threshold of the µ-independence. Applying the same approach, we showed that the quark
number operator can be rewritten in the form considered as the microscopic Fermi distribution
function, and that the quark number operator is zero for µ < mπ/2 at T = 0.

We have employed the Wilson fermion. The reduction formula is also derived for staggered
fermions. The present technique can be applied to staggered fermions.

We would like to thank M. Hanada and Y. Hidaka for discussions. The simulation was done by
using SX-9 at Osaka University, RCNP and CMC, SR16000 at KEK. AN is supported by Grants-in-
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