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We investigate the phase diagram in the temperature, imaginary chemical potential plane for
QCD with three degenerate quark flavors using Wilson type fermions. While more expensive
than the staggered fermions used in past studies in this area, Wilson fermions can be used safely
to simulate systems with three quark flavors. In this talk, we focus on the (pseudo)critical line
that extends from µ = 0 in the imaginary chemical potential plane, trace it to the Roberge-Weiss
line and determine its location relative to the Roberge-Weiss transition point. In order smoothly
follow the (pseudo)critical line in this plane we perform a multi-histogram reweighting in both
temperature and chemical potential. To perform reweighting in the chemical potential we use the
compression formula to compute the determinants exactly. Our results are compatible with the
standard scenario.
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QCD at imaginary chemical potential with Wilson fermions Andrei Alexandru

1. Introduction

The phase diagram of QCD at non-zero baryon density is interesting for both experimental and
theoretical reasons. In the temperature range around the deconfining transition the non-perturbative
effects are important and lattice QCD could provide important input. However, direct simulations
are not yet possible due to the notorious sign problem. On the other hand, the phase diagram of
QCD at imaginary chemical potential can be determined using lattice QCD since the integration
measure becomes real. It is then possible to map out the phase diagram for µ2 < 0 and then use
analyticity or reweighting to inform us about the phase diagram for µ2 > 0.

For imaginary chemical potential, the integration measure is real due to the γ5-hermiticity of
the fermionic matrix, i.e.

M(U,µ)† = γ5M(U,−µ
∗)γ5 . (1.1)

The other important property constraining the phase diagram in the imaginary chemical potential
plane is the behavior of the integrand in the grand-canonical partition function,

ZGC(T,V,µ) =
∫

DUe−Sg(U) detM(U,µ) , (1.2)

under the Z(3)-transformation U →U± with

[Uµ(xxx, t)]± =

{
Uµ(xxx, t)e±i 2π

3 if t = Nt −1 and µ = 4,

Uµ(xxx, t) otherwise.
(1.3)

The gauge action Sg and the Haar measure DU are invariant under this transformation and the
effect on the fermionic part can be viewed as a shift in the chemical potential,

detM(U±,µ) = detM(U,µ± i
2π

3
T ) . (1.4)

This leads to the periodicity of the grand canonical partition function

ZGC(T,V,µ) = ZGC(T,V,µ± i
2π

3
T ) . (1.5)

Charge conjugation symmetry relates the probability distribution of two gauge configurations
that are complex conjugated. The gauge action and the integration measure are symmetric under
the transformation, whereas the fermionic matrix satisfies

detM(U∗,µ) = detM(U,µ∗)∗ . (1.6)

This implies a Z(2) symmetry when the chemical potential is µ/T ∈{iπ,−iπ/3, iπ/3}. For µ/T =

iπ the configurations U and U∗ have equal probability, whereas for µ/T =±iπ/3 we have

P±iπ/3(U) = P±iπ/3((U
∗)∓) , (1.7)

where
Pµ/T (U)≡ 1

ZGC(T,V,µ)
e−Sg(U) detM(U,µ) (1.8)
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Figure 1: The phase diagram in the imaginary chemical potential plane. Solid lines indicate the first order
phase transition and dotted lines cross-overs. The thin dashed lines represent either rapid crossovers or real
transitions depending on the number of quark flavors and their mass.

is the probability density for configuration U . This Z(2) symmetry was studied by Roberge and
Weiss [1]. They found this symmetry is spontaneously broken at high temperatures, whereas at low
temperatures it is restored.

To understand better this behavior recall that at high temperature the Polyakov loop is ordered
and for µ = 0 the determinant favors the configurations with argP≈ 0. Using Eq. 1.4 this implies
that for µ/T = ±i2π/3 the Polyakov loop will be aligned differently, i.e. argP ≈ ∓2π/3. The
boundaries of these regions are the Roberge-Weiss lines µ/T ∈ {iπ,−iπ/3, iπ/3}. When we cross
these lines at high temperatures the alignment of the Polyakov lines changes abruptly and we have
a first order phase transition. At low temperatures the transition is smooth and we have a cross-
over. The standard scenario is depicted in Fig. 1. The temperature where the Roberge-Weiss line
changes from first order to cross-over is denoted with Trw. The expectation is that the Roberge-
Weiss transition point is connected with the (pseudo)critical transition point at zero density, Tc,
which in turn is connected with the critical point at real imaginary chemical potential, Te. Whether
the lines connecting these points are phase-transitions or cross-overs depends on the number of
quarks in the system and their mass.

This is not the only logically possible scenario; alternative possibilities are depicted in Fig. 2:
the (pseudo)critical line extending from zero density might terminate before intersecting the Roberge-
Weiss line or intersect it at a temperature different than Trw. It is then important to map out the phase
diagram at imaginary chemical potential using direct simulations. The phase diagram at imaginary
chemical potential was investigated for QCD with two degenerate quark flavors [2, 3, 4], three fla-
vors [5] and four flavors [6, 7, 8] using staggered fermions. For N f = 2,3 staggered simulations
use the standard determinant root technique and cross-checks with simulations using Wilson type
fermions are required to remove any possible doubts. For N f = 2 this was done by Nagata and
Nakamura [9]. In this talk we focus on the N f = 3 case.

2. Technical details

In this study we use gauge configuration generated using Iwasaki gauge action and clover
fermions. To determine the structure of the phase diagram we focus on the region 1.65≤ β ≤ 1.73
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Figure 2: Alternative scenarios: the (pseudo)critical line extending from µ = 0 could terminate before
touching the Roberge-Weiss line (left) or intersect it at a temperature different than Trw.

and µI/T ∈ [0,π/3]. To reduce the number of ensemble needed in our investigation we used multi-
histogram reweighting [10]. Since we plan to trace out the (pseudo)critical line extending from
zero density into the imaginary chemical potential plane, we need to do a reweighting both in β

(temperature) and µ . Schematically this can be achieved by introducing a reweighting factor α(U)

via

〈O(U)〉
β ,µ =

〈O(U)α(U)〉
β0,µ0

〈α(U)〉
β0,µ0

, (2.1)

where

α(U)≡ e−(β−β0)Sg(U) detM(U,µ)

detM(U,µ0)
. (2.2)

To compute the reweighting factor we need to compute a ratio of determinants. Our approach is
to compute this ratio exactly using determinant compression method [11, 12]. The advantage of
the compression method is that once the compressed matrix is diagonalized, we can compute the
determinant for arbitrary values of the chemical potential as long as the other parameters are kept
fixed. Thus, to facilitate this calculation we need to fix the value of the bare mass parameter κ

and the clover term csw. One of the goals for our study is to compare the reweighting results to
results derived in canonical simulations [13]. We use the values that correspond to T = 0.87Tc

in our N f = 3 study [14], κ = 0.13825 and csw = 1.89374. This corresponds to a pion mass of
mπ ≈ 750MeV.

In Fig. 3 we show the distribution of the Polyakov loops and the positions in the phase diagrams
for the ensembles used in this study. Each ensemble has about 20,000 configurations of size 63×4.
Note that the Polyakov loop prefers the real sector except for the ensembles generated at µI/T =

π/3. This is the Roberge-Weiss line and the Z(2) symmetry is apparent. Note also that for β = 1.73
the distribution of the Polyakov loops is bi-modal indicating that the symmetry is spontaneously
broken, whereas for lower temperatures the Polykov loops follow a unimodal distribution signaling
a restoration of the symmetry.

3. Numerical results

To map out the phase diagram we determine the (pseudo)critical extending from µ = 0 and
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Figure 3: Left: Polyakov loop distribution for µI/T = 0, π/24, π/12, π/6 and π/3 (top to bottom) and
β = 1.65, 1.67, 1.69, 1.70, 1.71 and 1.73 (left to right). The dashed line in each plot indicates the direction
of e−iµI/T in the complex plane. Right: the parameters of the generated ensembles and the (pseudo)critical
curve as determined from this study.

the transition point on the Roberge-Weiss line. The first task can be accomplished by monitoring
the Polyakov line magnitude as we increase the temperature for fixed µI/T . In the right panel of
Fig. 4 we show that Polyakov loop curves for µI/T = 0, π/6, π/4, and π/3. Note that the transition
moves to higher temperature as we increase the imaginary chemical potential. To pinpoint better the
transition point we determine the Polyakov loop susceptibility and locate the transition temperature
at the point where the susceptibility reaches its maximal value. This is indicated in the lower figure
from the right panel of Fig. 4. Using reweighting we can trace the transition temperature as a
function of µI . The results are presented in the left panel of Fig. 4. The curve is well described by
the following function:

βc

(
µI

T

)
= c0 + c2

(
µI

T

)2
+ c4

(
µI

T

)4
, (3.1)

with c0 = 1.69658(3), c2 = 0.02014(6), and c4 = 0.00040(6).
The next task is to compute the transition temperature along the Roberge-Weiss line µI/T =

π/3. At high temperatures the Polyakov loop is expected to oscillate between arg(P) = 0 and
arg(P) =−2π/3 sectors and generate a bimodal distribution. As we lower the temperature the two
peaks should get closer and eventually merge into one. This is exactly the situation we observe
in the bottom panel of Fig. 5 where the probability distribution of ϕ(U) = Im(P(U)× eiπ/3) is
plotted for a set of increasing temperatures. To determine the location of the transition point more
precisely we compute the Binder cumulant for this quantity:

b4(ϕ) =

〈
ϕ4
〉

〈ϕ2〉2
. (3.2)

The Binder cumulant value is expected to be 3, 1, 1.604, and 1.5 for cross-overs, first-order transi-
tions, second order in the 3D Ising universality class, and triple point respectively. In the standard
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Figure 4: Left: the (pseudo)critical temperature as a function of imaginary chemical potential. Right:
Absolute value of the Polyakov loop as a function of temperature for fixed µI/T (top) and its susceptibility
(bottom).

scenario, the expectation is that the Binder cumulant curve as a function of temperature will assume
either the value of 1.604 or 1.5 as we intersect with the (pseudo)critical curve at βc(π/3). As we
can see from Fig. 5 this expectation is close to what we observe. However, if we look closely we
find that the intersection point is not very close to neither of these values. Since the statistical errors
are quite small –they are comparable with the thickness of the line in Fig. 5– this must be a finite
volume effect. Larger volume simulations are required to establish the exact nature of the transition
and whether the (pseudo)critical line intersects the Roberge-Weiss line at the same temperature.

To conclude: we analyzed the phase diagram of N f = 3 QCD at a pion mass of mπ = 760MeV.
Our results are consistent with the Roberge-Weiss first order phase transition terminating at a point
close to the (pseudo)critical curve. In this study we only used one lattice volume, 63× 4, and we
cannot yet distinguish between a second order transition or a triple point. We plan to generate
ensembles at larger volume and use finite size scaling to answer these questions.

Acknowledgments: The computational resources for this project were provided in part by the
George Washington University IMPACT initiative and in part by χQCD collaboration. This work
is supported in part by the NSF CAREER grant PHY-1151648.
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