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It was previously found that at high temperature the lowest part of the QCD Dirac spectrum

consists of localized modes obeying Poisson statistics. Higher up in the spectrum, modes become

delocalized and their statistics can be described by random matrix theory. The transition from

localized to delocalized modes is analogous to the Anderson metal-insulator transition. Here we

use dynamical QCD simulations with staggered quarks to study this localization phenomenon.

We show that the “mobility edge”, separating localized and delocalized modes, scales properly in

the continuum limit and rises steeply with the temperature. Using very high statistics simulations

in large volumes we find that the density of localized modes scales precisely with the spatial

volume and even at T = 2.6Tc the lowest part of the spectrum extends all the way down to zero

with no evidence of a spectral gap.
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Quark localization in QCD above Tc Ferenc Pittler

Ns Ncon f Neig

24 45122 256

36 14445 550

48 6984 1000

Table 1: Details of our ensembles at lattice spacing a = 0.125 fm, and temperature T = 394 MeV. Ns is the

linear spatial extension of the lattice, Ncon f is the number of generated configurations and Neigv is the number

of eigenvalues determined for each configuration.

1. Introduction

Although not being directly accessible to experiments, the spectrum of the Dirac operator, and

in particular its low end, contains important information on observable properties of QCD. For

example, the order parameter of the chiral phase transition, the chiral condensate, is related to the

density of low eigenvalues of the Dirac operator through the Banks-Casher relation [1]. Moreover,

as the quark propagator is the inverse of the Dirac operator, the lowest Dirac modes get the largest

weight in its mode decomposition.

In QCD at low temperatures, the low-lying eigenmodes of the Dirac operator are delocal-

ized, and in the so-called epsilon-regime the corresponding eigenvalues are well described by the

Wigner-Dyson statistics of Random Matrix Theory (RMT) [2, 3]. However, this is no longer true

at high temperature. It was shown in [4] that around the critical temperature Tc the eigenmodes of

the staggered Dirac operator become localized near the “spectrum edge”, i.e., near λ = 0. More-

over, the first few eigenvalues of the overlap Dirac operator in pure SU(2) gauge theory were found

to be statistically independent, following Poisson statistics [5]. In a previous paper, we showed

that both Poisson and Wigner-Dyson statistics appear in the staggered Dirac spectra in pure SU(2)

gauge theory, in different spectral windows separated by the so-called “mobility edge” [6]. More

recently, we showed that this transition appears also in the case of real QCD with 2+1 flavors of

dynamical quarks with physical quark masses [7]. In this paper we make large improvement on the

statistics compared to [7]. We also show that while it is unlikely that a true spectral gap is present

in the Dirac spectrum at high temperature, nevertheless an effective gap appears due the presence

of the low-lying localized modes.

2. Simulation details

We diagonalize the staggered Dirac operator in SU(3) gauge theory with 2+1 flavors of dy-

namical quarks. We use physical quark masses in our simulations [8]. To determine precisely the

spectral density at the low end of the spectrum we generated large ensembles on large lattice vol-

umes (see Table 1). We have ensembles in the temperature range [260 MeV,800 MeV]. We use

three different lattice spacings a = 0.125 fm, 0.082 fm, 0.062 fm in order to estimate the scaling

violations.

3. Results

We first show that in QCD at high temperature the eigenmodes of the Dirac operator behave
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Figure 1: The local average participation ratio of eigenvectors for three different volumes. Here T =

394MeV .

quite differently depending on whether they are located in the bulk or at the edge of the spectrum.

The localization properties of an eigenmode ψi can be examined by studying the so-called partic-

ipation ratio PR = 1
V

(

∑x |ψ
†
i (x)ψi (x) |

2
)−1

, where V is the spatial volume. The PR essentially

measures the fraction of the lattice volume occupied by a given eigenmode. In the thermodynamic

limit, the average PR for localized modes is zero, while for delocalized modes it is a non-zero finite

number. In Fig. 1 we show how the average PR changes along the spectrum for three different

lattice volumes. The low-lying modes occupy only a small fraction of the total volume, which

decreases when increasing the linear spatial size of the lattice Ns, meaning that they are localized.

In contrast, the eigenmodes in the bulk occupy the same fraction of the total volume independently

of the volume, i.e., they are delocalized.

Localized modes appear at the low end of the spectrum, where the spectral density is small.

In Fig. 2 we show our results for the integrated spectral density of the Dirac operator normalized

by the spatial volume, Γ = 1
V

∫ λa
0 ρ (λ ′a)d(λ ′a). As curves corresponding to different volumes lie

on top of each other, we conclude that the spectral density scales with V . While it is clear that Γ

vanishes rapidly as one approaches the origin, there are no indications of non-analyticity. Indeed,

a power-law fit to the data in the interval [0.09,0.12] works very well also below the fitting range.

We then expect that the spectral density behaves smoothly in the limit λ → 0. From the fit we

get that the spectral density vanishes as λ p with p = 4.047±0.001 at the spectrum edge, which is

faster than in the free case (ρ (λ )∼ λ 3).

The combination of localization and small spectral density leads one to expect that the low-

lying eigenmodes are not mixed by the fluctuations of the gauge field. As a consequence, the

corresponding eigenvalues are expected to be uncorrelated, thus following Poisson statistics. No-

tice that low spectral density alone does not necessarily lead to uncorrelated eigenvalues: this is

the case in the two-flavor Schwinger model [9]. Moving towards the bulk of the spectrum, the den-

sity of eigenvalues increases rapidly, and the eigenvectors start to become delocalized. The typical

gauge field fluctuations are then expected to easily mix the eigenmodes, as their energy difference

is small and they also have significant spatial overlap. In this case, the corresponding eigenvalues

are expected to follow the Wigner-Dyson statistics of the appropriate ensemble of RMT, which is

the unitary ensemble in the case of QCD.
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Figure 2: Left panel: The integrated spectral density normalized by the volume for the ensembles listed in

Tab. 1. The continuous line corresponds to a power law fit to the data on the largest volume (Ns = 48) in

the interval [0.09,0.12]. Right panel: Zoom in the spectral region around λ ≃ 0 i.e. around the “spectrum

edge”.

To detect the expected transition in the spectral statistics we use the distribution of spacings

between neighboring eigenvalues on the scale of the local average level spacing, the so-called un-

folded level spacing distribution (ULSD). For Poisson statistics the ULSD is a simple exponential,

while for Wigner-Dyson statistics it is well approximated by the so-called Wigner surmise for the

appropriate random matrix ensemble. We display our results in Fig. 3. For comparison we include

the exponential (dotted line) and the unitary Wigner surmise (continuous line) in each panel. In

panel a1 we see a nice agreement with the exponential, indicating that the low modes follow Pois-

son statistics. In panel b we show the ULSD in a spectral window where the spectral density is

one order of magnitude larger. There is a clear signal of a deviation from the Poisson exponential

towards the unitary Wigner surmise, which increases as one moves further up along the spectrum

(panel c). Approaching even more the bulk of the spectrum (panel d) the spectral statistics nearly

agrees with the Wigner surmise. Thus the eigenvalue statistics in the bulk of the Dirac spectrum

is well described by Random Matrix Theory in the high temperature quark-gluon-plasma phase as

well as in the low temperature hadronic phase.

It is instructive to check the volume dependence of the transition in the spectrum. Instead of

comparing the whole distribution in a given spectral window on different volumes, it is simpler to

just pick one parameter of the distribution and see how it changes along the spectrum. For this

purpose we use the variance of the ULSD, which can be computed analytically for both kinds of

statistics.2 We show our results in Fig. 4. It is clearly seen that the transition becomes sharper for

larger volumes, which suggests that it becomes a true phase transition in the thermodynamic limit.

A proper finite size scaling analysis of the transition and a comparison with the Anderson transition

is discussed in [10]. In a finite volume the separation between localized and delocalized modes is

not sharp, and so the definition of the “mobility edge” λc is not unique. Here we define it to be

the inflection point of the variance of the ULSD. If there is a genuine phase transition, this point

1The reason why we do not show our results below this interval in the spectrum is simply that we do not have

enough eigenvalues in that spectral window to obtain a good statistics (see Fig. 2).
2It is 1 for Poisson statistics and approximately 0.178 for the unitary ensemble of RMT.
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Figure 3: The unfolded level spacing (∆λ =
λn+1−λn

〈λn+1−λn〉
) distribution (ULSD) in four non-overlapping spectral

windows. The dashed and dotted line indicates the ULSD for Poisson statistics and for RMT statistics

respectively. The spatial extension of the lattice is Ns = 48 and the temperature is T = 394 MeV.
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Figure 4: The variance of the local ULSD for three different volumes. The smooth and the dashed line

indicates the variance of ULSD in the case of Poisson statistics and RMT statistics respectively.

should tend to the true critical point in the thermodynamic limit. The critical statistics is examined

in [11].

As long as hadronic correlators are concerned, the “mobility edge” λc acts as an effective gap

in the spectrum. To see this explicitly, let us write the quark propagator in terms of the Dirac

eigenmodes

G(x,y) =∑
n

1

iλn +mq

ψn (x)ψ†
n (y) , (3.1)

where x,y are space time points, mq is the bare quark mass and the sum is over all eigenmodes

ψn of the Dirac operator. Firstly, the sum in (3.1) is dominated by the low eigenmodes, which

are localized. On the other hand, for a localized mode, the product ψ (x)ψ† (y) is practically zero

when the distance between x and y is larger than the localization length, and so localized modes
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Figure 5: The temperature dependence of the localization length in units of the inverse temperature for three

different lattice spacings.

do not propagate quarks to large distances. Therefore, long range hadronic correlators receive

contributions only from the delocalized eigenmodes, for which λ > λc.

A possible definition of the localisation length l of localized modes is just l = a(V ·PR)
1
4 =

a
(

∑x |ψ
† (x)ψ (x) |2

)− 1
4 . In Fig. 5 we show l in units of the inverse temperature for three different

lattice spacings. The localization length in units of the inverse temperature remains around unity

for each lattice spacing. This suggests that the length scale of the localized modes is set by the

inverse temperature. The low localized eigenmodes are squeezed in the spatial directions in the

same way as in the temporal direction.

The “mobility edge” behaves as it were effectively a gap in the spectrum with respect to the

long range correlators. To determine how this effective gap depends on the temperature we define

a rescaled “mobility edge” λ rs
c ≡ λc

mud
, where mud is the bare quark mass. This quantity has a well

defined continuum limit [7]. We show our results for the rescaled “mobility edge” in Fig. 6 as a

function of the temperature for three different lattice spacings. The points fall nearly on a straight

line. The systematic error arising from finite lattice spacing effects are comparable to our statistical

errors. To determine the possible deviations from the linear behavior of λ rs
c we make a second

order polynomial fit (χ2 = 1.32). The coefficient of the first order term in T−Tc

Tc
is two orders of

magnitude larger than the coefficient of the second order term, so to a good approximation λ rs
c

increases linearly with the temperature. Notice that the “mobility edge” is already two orders of

magnitude larger than the quark mass just above Tc. We get a good crosscheck for our results

by extrapolating this fit to λ rs
c equal to zero, which corresponds to the temperature at which the

localized modes start to appear. We find for this point T≃170 MeV, which is above the point

where the finite temperature chiral crossover takes place [12, 13], consistently with the absence of

localised modes at low temperature.

4. Conclusion

We have shown that even at temperatures well above Tc the Dirac operator seems to have no

spectral gap. However, the low-lying modes behave quite differently compared to the modes in the

bulk: they are localized on the scale of the inverse temperature, and the corresponding eigenvalues
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Figure 6: The rescaled “mobility edge” λ rs
c = λc

mud
as a function of the temperature for three different lattice

spacings.

are statistically independent. Above the “mobility edge”, the eigenmodes are delocalized, as in the

low temperature regime. This “mobility edge” plays the role of an effective gap with respect to the

long range correlators. Here long range means that the separation of the fields in the correlator is

larger than the inverse temperature.
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