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Lattice effective field theory for nuclei from A = 4to A = 28 Timo A. Lihde

1. Introduction

Nuclear Lattice Effective Field Theory (NLEFT) is a first-principles approach, in which Chiral
EFT for nucleons is combined with numerical Auxiliary-Field Quantum Monte Carlo (AFQMC)
lattice simulations. NLEFT differs from other ab initio methods [[I—H] in that it is an uncon-
strained Monte Carlo calculation, which does not rely on truncated basis expansions or many-body
perturbation theory, nor on prior information about the structure of the nuclear wave function.

2. Nuclear Lattice EFT at NNLO

As in Chiral EFT, our calculations are organized in powers of a generic soft scale Q associated
with factors of momenta and the pion mass [@]. We denote &/(Q") as leading order (LO), 0(Q?) as
next-to-leading order (NLO), and & (QS) as next-to-next-to-leading order (NNLO) contributions.
The present calculations are performed up to NNLO. We define H,  as the LO lattice Hamilto-
nian, and HSU( 4) 38 the equivalent Hamiltonian with the pion-nucleon coupling g, = 0 and contact
interactions that respect Wigner’s SU(4) symmetry.

In our NLEFT calculations (see Ref. [B] for a review), H , is treated non-perturbatively. The
NLO contribution to the two-nucleon force (2NF), the electromagnetic and strong isospin-breaking
contributions (EMIB), and the three-nucleon force (3NF) which first enters at NNLO, are all treated
as perturbations. It should be noted that our “LO” calculations use smeared short-range interactions
that capture much of the corrections usually treated at NLO [B]. The 3NF at NNLO over-binds
nuclei with A > 4 due to a clustering instability which involves four nucleons on the same lattice
site. The long-term objective of NLEFT is to remedy this problem by decreasing the lattice spacing
and including the N3LO corrections in Chiral EFT. In the mean time, the over-binding problem
has been rectified by means of a 4N contact interaction, tuned to the empirical binding energy of
either “He or ®Be [[M]. While this provides a good description of the alpha nuclei up to A = 12
including the Hoyle state [[0 -], the over-binding is found to increase more rapidly for A > 16.
Therefore, in Ref. [[3] a non-local 4N interaction which accounts for all possible configurations of
four nucleons on adjacent lattice sites was introduced, and adjusted to the empirical binding energy
of 2*Mg. A detailed study of the spectrum of 'O will be reported separately [I4].

3. Euclidean time projection

The NLEFT calculations reported here (see also Ref. [[3]) are performed with a (spatial) lattice
spacing of @ = 1.97 fm in a periodic cube of length L = 11.8 fm. Our trial wave function ]‘Pg‘it) isa
Slater-determinant state composed of delocalized standing waves, with A nucleons and the desired
spin and isospin. First, we project ]‘Pﬁlit> for a time ¢’ using the Euclidean-time evolution operator
of the SU(4) Hamiltonian, giving the “trial state” |¥,(')) = exp(—HSU( 4)t’ )P, Second, we
use the full Hamiltonian H;  to construct the Euclidean-time projection amplitude

Zy(t) = (Pu ()| exp(—Hiot) ¥4 (1)), Ex(t) = —9[InZ,(1)]/0t, (3.1

and the “transient energy” E, (). If we denote by [¥, ) the lowest (normalizable) eigenstate of

H, ;, which has a non-vanishing overlap with the trial state |¥,(¢’)), we obtain the corresponding
energy E, , as the 7 — oo limit of E, (t).
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Figure 1: NLEFT results for '°0. The LO energy is E o = —147.3(5) MeV, and the result at NNLO
including 4N interactions is Exy o44n = —131.3(5) MeV. The empirical binding energy is —127.62 MeV.

The NLO and NNLO contributions are evaluated in perturbation theory. We compute operator
expectation values using

Z3 (1) = (Pa(1") | exp(—Hyot /2) O exp(—Hy ot /2)[ (1)), (3.2)

for any operator &. Given the ratio X{ (t) = Z¢ (t)/Z, (t), the expectation value of & for the desired
state [¥, ) is obtained as Xfo = (Wy0lO¥ap) = lim, e X7 (1).

Sign oscillations make it difficult to reach sufficiently large values of the projection time ¢. It
is helpful to note that the closer the trial state [V, (¢')) is to [¥, (), the less the necessary projection
time ¢. [¥,(¢')) can be optimized by adjusting both the SU(4) projection time ¢’ and the strength of
the coupling CSU( 4 of Hgy(4). The accuracy of the extrapolation # — co can be further improved by
simultaneously incorporating data from trial states that differ in CSU( 4y
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Figure 2: NLEFT results for 2’Ne. The LO energy is E o = —199.7(9) MeV, and the result at NNLO
including 4N interactions is Exy o 4n = —165.9(9) MeV. The empirical binding energy is —160.64 MeV.

The large-time behavior of Z, (¢) and Z{ (¢) is controlled by the low-energy spectrum of H, .
Let |[E) label the eigenstates of H| , with energy E, and let p, (E') denote the density of states for a
system of A nucleons. We then express Z, (¢) and Z{ (¢) in terms of their spectral representations,

2y(1) = [ 4E py(E) [(EN2A ()] exp(~Er), (3.3)
28 (t) = [ AEE' py(B) pa ()W) [E) (EIO|E') (E'1%,(1) exp(~(E+ENt/2),  (4)

from which we construct the spectral representations of E,(¢) and X{ (¢). We can approximate
these to arbitrary accuracy over any finite range of ¢ by taking p,(E) to be a sum of energy delta
functions, p,(E) ~ Zfi‘g O0(E—E AJ.), where we take i = 4 for the *He ground state, and imax = 3
for A > 8. Using data obtained for different values of CSU( 4y We perform a correlated fit of E, (r)
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Figure 3: NLEFT results for >*Mg. The LO energy is E o = —253(2) MeV, and the result at NNLO
including 4N interactions is Exng oy 4n = —198(2) MeV. The empirical binding energy is —198.26 MeV.
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and X Aﬁ (¢) for all operators & that contribute to the NLO and NNLO energy corrections. We find
that the use of 2 — 6 trial states allows for a much more precise determination of E, , and X f 0
than hitherto possible. In particular, we may “triangulate” X Aﬁ: o using trial states that cofrespond to
functions X f (¢) which converge both from above and below, thereby bracketing X f: 0

4. Results

The NLEFT results for '°O are given in Fig. [, for 2°Ne in Fig. B, for >*Mg in Fig. B, and
for 28Si in Fig. B. The curves show a correlated fit for all trial states, using the same spectral
density p,(E). The upper row in each figure shows the LO energy, the total isospin-symmetric
2NF correction (NLO), the electromagnetic and isospin-breaking corrections (EMIB) and the total
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Figure 4: NLEFT results for Si. The LO energy is E; o = —330(3) MeV, and the result at NNLO including
4N interactions is Exn; o4y = —233(3) MeV. The empirical binding energy is —236.54 MeV.

3NF correction. The remaining panels show the matrix elements X Aﬁ(t) that form part of the NLO
and 3NF terms. The operators dE, /dC; give the contributions of the NLO contact interactions, and
AE, (Ax,;) denotes the energy shift due the &'(a?)-improved pion-nucleon coupling. The operators
JE, /dD,; give the individual contributions to the total 3NF correction.

To summarize, we have reported on the extension of NLEFT to the regime of medium-mass
nuclei. While the NNLO results are good up to A = 12, an increasing over-binding (associated with
the momentum-cutoff scale and neglected higher-order contributions) manifests itself for A > 16.
While the long-term objectives of NLEFT are to decrease the lattice spacing and include higher
orders in the EFT expansion, we also find that the missing physics can be approximated by an
effective 4N interaction. The current exploratory results represent an important step towards more
comprehensive NLEFT simulations of medium-mass nuclei in the future.
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