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We report our recent study of spin-orbit force between two nucleons in the parity-odd sector from
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Nambu-Bethe-Salpeter wave functions in 3P0, 3P1 and 3P2 −3 F2 channels calculated from lattice
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quark action with RG improved (Iwasaki) gauge action. We find that the potentials tend to become
stronger as the quark mass decreases.
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1. Introduction

The study of the nuclear force is a first step toward the understanding of the atomic nuclei
beyond the single nucleon. The nuclear force plays a key role in describing various properties of
atomic nuclei and neutron stars [1, 2]. Recently, a method to extract hadronic interactions from
lattice QCD has been proposed, where energy-independent non-local potentials are defined from
the Schrödinger equation by using the equal-time Nambu-Bethe-Salpeter (NBS) wave functions
[3, 4]. The method gives the potentials which are faithful to the scattering phase shift. This is
supported by the asymptotic long distance behavior of the equal-time NBS wave functions [4]. It
has been successfully applied to the central and tensor forces in the parity-even NN system [3, 4, 5].
It has been extended and applied to various other systems such as hyperon-nucleon (YN), hyperon-
hyperon (YY), meson-baryon, and three-nucleons (NNN) [6]. Once these potentials are obtained,
they can be used to study various physical observables such as bound states and scattering phase
shift, by solving the Schrödinger equation. (See Ref.[7] for a comparison between the Lüscher’s
method and the potential method for the π π scattering phase shifts, where a good agreement is
obtained.)

The potentials are classified order by order in the derivative expansion of the non-local poten-
tials. At the leading order (LO), we have the spin-singlet central potential V (±)

C;S=0(r), the spin-triplet

central potential V (±)
C;S=1(r) and the tensor potential V (±)

T (r), where the super-index “(±)” indicates
the parity of the two-nucleon system. At the next-to-leading order (NLO), there appear the spin-
orbit potentials V (±)

LS (r). Up to the NLO, there are these 8 independent local potentials[4]. So far
our studies have been mainly concentrated on the central and the tensor potentials in the parity-
even sectors which can be obtained from the NBS wave functions in S and D waves [3, 4, 5]. For
complete determination of NN potentials, we need also to determine the central and the tensor po-
tentials in the parity-odd sector at LO as well as the spin-orbit (LS) potentials in both parity sectors
at NLO. Especially, the spin-orbit potential is known to be important in the NN system not only
to reproduce the experimental phase shift in spin-triplet P wave channels, but also to induce the
P-wave superfluidity in the stellar environment such as the neutron star interiors [8, 9, 10].

As our recent progress, we have extended our method to the central, the tensor and the spin-
orbit potentials in the parity-odd sector, and have presented the first result of these potentials [11].
The calculation was performed by using the 2 flavor gauge configuration generated by CP-PACS
collaboration at mπ = 1133 MeV [12], where we found that, while the qualitative behavior of resul-
tant potentials are consistent with phenomenological ones, these potentials are still weak, which is
considered to be caused by the heavy quark mass employed in our simulations. The main purpose
of this paper is to examine the quark mass dependence of the central, the tensor and the spin-orbit
potentials in parity-odd NN system, by using the 2 + 1 flavor gauge configurations generated by
PACS-CS collaboration at mπ = 702, 570 and 411 MeV [13].

2. Definition of the potential

To construct the NN potential, we consider the equal-time Nambu-Bethe-Salpeter (NBS) wave
function in the center of mass (CM) frame, defined by

φα,β (r;k) ≡ 〈0|pα(x)nβ (y)|p(+k)n(−k)〉, (r ≡ x−y) (2.1)
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where pα(x) and nβ (y) denote local composite nucleon operators with spinor indices α , β , and
k denotes the asymptotic momentum of the two-nucleon state. We define NN potentials from the
NBS wave function below the inelastic threshold (E < Eth ≡ 2mN +mπ ) by using the Schrödinger
equation [4, 6](

Ek +
∇2

mN

)
φ(r;k) =

∫
d3r

(
P(+)U (+)(r,r′)+P(−)U (−)(r,r′)

)
φ(r′;k), (2.2)

where Ek ≡ k2

mN
denotes the non-relativistic energy. P(+) and P(−) denote projection operators for

parity-even and parity-odd sectors, respectively. U (+) and U (−) denote the non-local potentials for
parity-even and parity-odd sectors, to which we apply the derivative expansion as

U (±)(r,r′) = V (±)(r,∇)δ (r− r′) (2.3)

V (±)(r,∇) = V (±)
C;S=0(r)P

(S=0) +V (±)
C;S=1(r)P

(S=1) +V (±)
T (r)S12 +V (±)

LS (r)L ·S+(NNLO),

where P(S=0) ≡ (1−σ1 ·σ2)/4 and P(S=1) ≡ (3 + σ1 ·σ2)/4 denote the projection operators onto
the total spin singlet and triplet sectors, respectively. S12 ≡ 3(r ·σ1)(r ·σ2)/r2 −σ1 ·σ2 is referred
to as the tensor operator. L ≡ i r×∇ and S ≡ (σ1 + σ2)/2 denote the orbital angular momentum
operator and the total spin operator, respectively. V (±)

C;S=0, V (±)
C;S=1, V (±)

T and V (±)
LS are referred to as

the spin-singlet central, the spin-triplet central, the tensor, and the spin-orbit forces, respectively.
While V (±)

C;S=0, V (±)
C;S=1 and V (±)

T are of leading order(LO) in the derivative expansion of the non-

local potential, V (±)
LS appears at next-to-leading order(NLO). Once the above NBS wave functions

are calculated in lattice QCD simulations, these potentials can be extracted by solving Eq.(2.2).

2.1 Spin-triplet potentials in parity-odd sector including spin-orbit force

We restrict ourselves to the spin-triplet and parity-odd sector. The Schrödinger equation
Eq.(2.2) reads (

E +
∇2

mN

)
φ(r) =

[
V (−)

C;S=1(r)+V (−)
T (r) S12 +V (−)

LS (r) L ·S
]

φ(r). (2.4)

In order to determine V (−)
C;S=1, V (−)

T and V (−)
LS , we need three independent NBS wave functions

φi(r) with i = 1,2,3, for which we take NBS wave functions in 3P0(JP = 0−), 3P1(JP = 1−) and
3P2 −3 F2(JP = 2−) channels. V (−)

C;S=1, V (−)
T and V (−)

LS are obtained as solutions to Eq.(2.4) asV (−)
C;S=1(r)
V (−)

T (r)
V (−)

LS (r)

 = M(~r)−1

 (∇2/mN +E1) φ1(r)
(∇2/mN +E2) φ2(r)
(∇2/mN +E3) φ3(r)

 , (2.5)

where Ei denotes the non-relativistic energy associated with the NBS wave functions φi(r), and
M(~r) is a 3×3 matrix defined by

M(~r) ≡

 φ1(r) S12φ1(r) L ·Sφ1(r)
φ2(r) S12φ2(r) L ·Sφ2(r)
φ3(r) S12φ3(r) L ·Sφ3(r)

 . (2.6)
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3. Construction of NBS wave functions by lattice QCD

The equal-time NBS wave functions are obtained from 4-point nucleon correlation functions
on the lattice in the large t region as

G(x−y, t − t0;J J,S=1) ≡ 1
L3 ∑

r
〈0|T

[
p(x+ r, t)n(y+ r, t)J J,S=1(t0)

]
|0〉 (3.1)

' φ J,S=1
0 (x−y) a0e−E0(t−t0), t − t0 À 1,

where the summation over r in the first line is performed to select the two-nucleon system with
vanishing total spatial momentum. J J,S=1 denotes a two-nucleon source operator for the total
angular momentum J in the spin-triplet parity-odd sector. For nucleon operators p(x) and n(y), we
employ the following local composite operators

p(x) ≡ εabc(uT
a (x)Cγ5db(x))uc(x), n(x) ≡ εabc(uT

a (x)Cγ5db(x))dc(x), (3.2)

where a, b and c denote color indices. φ J,S=1
0 (r) and E0 denotes the NBS wave function and the

energy of the ground state in the total angular momentum J in the spin-triplet parity-odd sector,
respectively. The coefficient a0 ≡ 〈p(+k0)n(−k0)|J J,S=1(0)|0〉 is the overlap factor between
states created by the source and the ground state in this system with the asymptotic momentum k0.

For the two-nucleon source operator J J,S=1, we take two-nucleon momentum wall source
operator defined by

Jαβ ( f ) ≡ P̄α( f )N̄β ( f ∗), (3.3)

where

P̄α( f ) ≡ ∑
x1,x2

εabc
(
ūa(x1)Cγ5d̄T

b (x2)
)
∑
x3

ūc,α(x3) f (x3) (3.4)

N̄β ( f ) ≡ ∑
x1,x2

εabc
(
ūa(x1)Cγ5d̄T

b (x2)
)
∑
x3

d̄c,β (x3) f (x3)

with f being one of the following source functions, each of which corresponds to a plane wave
parallel or anti-parallel to one of the spatial coordinate axes as

f (0)(r) ≡ exp(−2πix/L), f (1)(r) ≡ exp(−2πiy/L), f (2)(r) ≡ exp(−2πiz/L),

f (3)(r) ≡ exp(+2πix/L), f (4)(r) ≡ exp(+2πiy/L), f (5)(r) ≡ exp(+2πiz/L). (3.5)

Note that an element g of the cubic group O with 24 elements acts on these plane waves as

f (i) 7→ ∑
j

Ui j(g) f ( j), (3.6)

where U(g) is a 6×6 permutation matrix, which servers as the representation matrix of g∈O. By a
cubic group analysis, the orbital part of this momentum wall source is decomposed into A+

1 ⊕E+⊕
T−

1 . Therefore, for the parity-odd sector, we can access JP = (L = T−
1 )⊗(S = A1) = T−

1 (' 1−) for
the spin-singlet sector and JP = (L = T−

1 )⊗(S = T1) = A−
1 ⊕E−⊕T−

1 ⊕T−
2 (' 0−⊕2−⊕1−⊕2−)

for the spin-triplet sector.
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The momentum wall source with a definite total angular momentum is now constructed as

J J
αβ ( f (i)) ≡ d(J)

24 ∑
g∈O

χ(J)(g−1)Ui j(g)Jα ′β ′( f ( j))S−1
α ′α(g−1)S−1

β ′β (g−1) (3.7)

where d(J) and χ(J)(g) denote the dimension and the character for the irreducible representation J
of the cubic group, respectively. Hereafter the Dirac indices α,β are restricted to upper components
(in the Dirac representation). The total spin S is projected by the spin projection operator P(S) as

J J,S
αβ ( f (i)) ≡ P(S)

αβ ,γδ J J
γδ ( f (i)). (3.8)

Finally, the parity projection is performed by

P(±)Jαβ ( f (i)) ≡ 1
2

(
Jαβ ( f (i))±Jαβ ( f (i)∗)

)
. (3.9)

Note that f (i)∗ is the plane wave with the opposite momentum of f (i). (For detail of the construction
of two-nucleon momentum wall source operator, see Ref.[11])

4. Numerical results

Our calculation is performed by using N f = 2+1 full QCD gauge configurations generated by
PACS-CS collaboration on a 323×64 lattice[13], which employs the RG improved action (Iwasaki
action) at β = 1.90 leading to the lattice spacing a−1 = 2.176(31) GeV (a = 0.0907(13) fm) and
the lattice extension L ' 2.9 fm. As the quark action, it employs the O(a) improved Wilson quark
action (clover action) with CSW = 1.715 at κud = 0.13700, 0.13727 and 0.13754 and κs = 0.13640.
These κud correspond to the pion mass mπ = 702(1)(10), 570(2)(8) and 411.3(2)(6) MeV and the
nucleon mass mN = 1538(5)(23), 1411(12)(20) and 1215(12)(17) MeV, respectively. The first
errors are statistical and the second ones are the systematic errors coming from ambiguity of the
lattice scale. The 4-point nucleon correlation functions Eq.(3.1) are calculated with the periodic
and Dirichlet boundary conditions along the spatial and the temporal directions, respectively. To
improve the statistics, we use 4 source points by temporally shifting the gauge configurations. The
charge conjugation and time reversal symmetries are used to double the number of statistical data.

We calculate the NBS wave functions with JP = A−
1 ,T−

1 and E−, whose dominant components
correspond to 3P0, 3P1 and 3P2 −3 F2, respectively. In order to extract the potentials, we solve
Eq.(2.4) by using the time-dependent method[5] which can efficiently extract the potentials without
requiring the ground state saturation of the 4-point nucleon correlation functions Eq.(3.1).

Preliminary results of the central, the tensor and the spin-orbit potentials at t − t0 = 8,9,10
for mπ = 702 MeV are presented in Fig.1. We see similar behaviors observed in Ref.[11] such
as (1) the central potential has a repulsive core at short distance, (2) the tensor potential is weak
and positive, and (3) the spin-orbit potential is negative and strong. However, we observe that the
convergence of long distance part of the central potential is very slow, which may be caused by
the NNLO terms in the derivative expansion of the non-local potential or the inelastic contribution
in the 4-point nucleon correlation function Eq.(3.1). Similar tendency is seen for the case of other
quark masses. To achieve the time slice saturation, we need to use the NBS wave functions at

5



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
2
3
5

Quark mass dependence of Spin-Orbit force in parity-odd NN system from 2+1 flavor QCD
K. Murano for HAL-QCD Collaboration

-200

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  0.5  1  1.5  2  2.5

M
eV

fm

-50

 0

 50

 100

 0.5  1  1.5  2  2.5

VC t=10
VC t=9
VC t=8

-40

-20

 0

 20

 40

 0  0.5  1  1.5  2  2.5

M
eV

fm

VT t=10
VT t=9
VT t=8

-1400

-1200

-1000

-800

-600

-400

-200

 0

 200

 0  0.5  1  1.5  2  2.5

M
eV

fm

VLS t=10
VLS t=9
VLS t=8

Figure 1: The t-dependence of central(top left), tensor(top right) and spin-orbit(bottom) potentials in the
spin-triplet and parity odd sector for t − t0 = 8(red), 9(green) and 10(blue) for pion masses 702 MeV.

somewhat larger t. Preliminary results on the quark mass dependence of the central, the tensor, and
the spin-orbit potentials at t− t0 = 9 are shown in Fig.2. Red, blue and black data correspond to the
pion mass mπ = 702, 570 and 411 MeV, respectively. We find the tendency that these potentials
become stronger as the quark mass decreases. In order to discuss the behaviors of the P-wave
phase shifts, it is necessary to achieve the time slice saturation of the central potential. For this, it
is important to increase the statistics.

5. Summary

As a continuation of our previous studies of the central, the tensor and the spin-orbit potential
in the parity-odd sector, we have examined a quark mass dependence of these potentials by using
2+1 flavor gauge configurations which are generated by PACS-CS collaboration at mπ = 702, 570
and 411 MeV. Although the time slice saturation is not achieved yet, we have observed the tendency
that these potentials become stronger as the quark mass decreases.

The lattice QCD calculation has been done on Blue Gene/Q at KEK under the support of
the Large Scale Simulation Program No.12/13-19(FY2013) and No.12-11(FY2012) of High En-
ergy Accelerator Research Organization (KEK). We are grateful for authors and maintainers of
CPS++[14], a modified version of which is used for simulations done in this report. We thank
PACS-CS collaboration [13] and ILDG/JLDG [15] for 2+1 flavor QCD gauge configurations. This
research is supported in part by MEXT Grant-in-Aid for Scientific Research (No.25287046), for
Scientific Research on Innovative Areas (No.2004: 20105001, 20105003) and SPIRE (Strategic
Program for Innovative REsearch).
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Figure 2: The quark mass dependence of the central potential (left), tensor potential (right) and spin-orbit
potential (bottom) in the spin-triplet and parity-odd sector. Red, blue and black points corresponding to
mπ = 702, 570 and 411 MeV, respectively.
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