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lation functions built from different operators, the leptonic decay constant this state is estimated
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with that of conventional vector charmonia. The connection of this state with X(4260) is also
discussed.

31st International Symposium on Lattice Field Theory - LATTICE 2013
July 29 - August 3, 2013
Mainz, Germany

∗Speaker.
†This work is supported in part by the National Science Foundation of China (NSFC) under Grants No.10835002,

No.11075167, No.11105153 and also by the U.S. DOE Grants No. DE-FG05-84ER40154. Y. C. and Z. L. also acknowl-
edge the support of NSFC and DFG (CRC110).

c⃝ Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:cheny@ihep.ac.cn
mailto:wfchiu@ihep.ac.cn
mailto:guilongcheng@ihep.ac.cn
mailto:liangjian@ihep.ac.cn
mailto:liuzf@ihep.ac.ac
mailto:ybyang@ihep.ac.cn
mailto:liu@pa.uky.edu


P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
2
5
1

Lattice study on exotic vector charmonium relevant to X(4260) Ying Chen

1. Introduction

X(4260) was first observed by BABAR and confirmed by Belle and CLEO in the initial state
radiation (ISR) process e+e− → γISRX → γISRJ/ψππ [1, 2, 3] with the resonance parameter MX =

4259±8+2
−6 MeV and ΓX = 88±23+6

−4 MeV. X(4260) has definitely the quantum number JPC = 1−−

and its leptonic decay width is estimated as Γ(X → e+e−)Br(X → J/ψππ) = 5.5±1.0+0.8
−0.7 eV [1],

which is in contrast to the similar combined width 672±45eV of ψ(3686). As such, X(4260) must
have an unusual small e+e− width or a very small coupling to J/ψππ . The nature of X(4260) is
now a hot topic and has been tentatively assigned to be a tetraquark state, a molecular state, or a
hybrid charmonium [4, 5, 6] by phenomenological studies.

As far as a hybrid charmonium is concerned, it is usually conjectured as a bound state made
up of a charm quark-antiquark pair and a (constituent) gluon in the picture of the constituent quark
model. In this work, we carry out a lattice study on the possible vector hybrid charmonium (denoted
as ψhyb (JPC = 1−−) in this work) in the quenched approximation. Since it has the same quantum
number as the conventional vector charmonium such as J/ψ , ψ ′, etc., it is a challenging task to
disentangle ψhyb from them. For this purpose, we split the commonly used hybrid operator c̄ΓcF
(F refers to the gluon field strength tensor) with the quark bilinear separating from F with a spatial
distance. This kind of operators is expected to reflect the exotic picture of a hybrid-like state that the
constituent cc̄ pair gets a center-of-mass motion by recoiling against the additional gluonic degree
of freedom, such that they may couple preferably to ψhyb while their coupling to the conventional
vectors may be suppressed. If ψhyb can be reliably singled out, its leptonic decay constant can be
subsequently derived through its coupling to the vector current. We will also discuss the connection
of ψhyb with X(4260).

2. Numerical details

For the vector charmonium (JPC = 1−−) of a possible hybrid configuration cc̄g, the commonly
used simple and straightforward local operator is O(H)

i (x) = c̄a(x)γ5cb(x)Bab
i (x), where a,b are col-

or indices, i the spatial index, and Bab
i (x) = 1

2 εi jkFab
jk the chromomagnetic field tensor. On the other

hand, the conventional quark bilinear operator for the vector is O(M)
i = c̄γic(x). Through the Foldy-

Wouthuysen-Tani transformation [7], these operators can be decomposed into the non-relativistic
expressions in terms of the Pauli spinors ϕ/ϕ † which annihilates/creates a charm quark, and χ/χ†

which creates/annihilates a charm antiquark. Thus to the lowest order of the nonrelativistic approx-
imation, the operators O(H)

i (x) and O(M)
i are reduced to be

O(H)
i ≡ c̄aγ5cbBab

i → χa†ϕ bBab
i +O(

1
mc

), O(M)
i ≡ c̄aγica → χa†σiϕ a +O(

1
mc

). (2.1)

Obviously the block χa†ϕ b of the O(H)
i operator is a spin singlet and color octet, while that of O(M)

i

is a spin triplet and color singlet. If we go further to split spatially the operator O(H)
i into two parts,

say, separate the quark bilinear c̄aγ5cb from the chromomagnetic field tensor Bab
i with an explicit

spatial displacement r, in a fixed gauge (the Coulomb gauge in this work), we get a set of spatially
extended operators,

O(H)
i (x, t;r) = (c̄aγ5cb)(x, t)Bab

i (x+ r, t). (2.2)
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In the nonrelativistic limit, there is a two-fold suppression for O(H)
i to couple to the conventional

vector charmonia ψ(nS): First, the charm quark-antiquark pair is in the spin triplet in ψ(nS) and the
spin flipping is suppressed by the heavy quark mass; secondly, there is no center-of-mass motion
of cc̄ for ψ(nS). Therefore, it is expected that the possible hybrid vector charmonium ψhyb can be
tackled more reliably from the correlation functions of this kind of operators.

The calculation of this work is performed in the quenched approximation on anisotropic lat-
tices with the temporal lattice spacing much finer than the spatial one, say, ξ = as/at = 5, where
as and at are the spatial and temporal lattice spacing, respectively. Two lattices are used and
1000 configurations for each lattice system are generated with the tadpole improved gauge ac-
tion [8, 9, 10]. The relevant input parameters are listed in Table 1, where as values are determined
from r−1

0 = 410(20) MeV. The spatial extension of both lattice is ∼ 1.7fm, which is large enough
for charmonia. We use the tadpole-improved clover action [11] for the charm quark. The param-
eters in the actions are tuned carefully by requiring that the physical dispersion relations of vector
and pseudoscalar mesons are correctly reproduced at each bare quark mass [12]. The bare charm
quark mass is set by the physical mass of J/ψ , mJ/ψ = 3.097 GeV. The finite as effects are found
to be small in this kind of lattice setup by testing the spectrum of 1S and 1P charmonia [13].

β ξ as(fm) Las(fm) L3 ×T Nconf

2.4 5 0.222(2) 1.78 83 ×96 1000
2.8 5 0.138(1) 1.66 123 ×144 1000

Table 1: The input parameters for the calculation. Values for the coupling β , anisotropy ξ , the lattice
spacing as, lattice size, and the number of measurements are listed.

In order to enhance the signal of the possible ψhyb, we use a source operator O(W )
i (τ) =

∑
y,z

c̄a(y,τ)γ5Bab
i (z,τ)cb(z,τ) to calculate the two point function,

C(H)(r, t) =
1

3T Nr

Nt−1

∑
τ=0

∑
|r|=r

∑
x,i
⟨0|O(H)

i (x, t + τ ;r)O(W )†
i (τ)|0⟩ (2.3)

=
1

3T Nr

Nt−1

∑
τ=0

∑
|r|=r

∑
x,y,z,i

Tr
⟨

S†
F(x, t + τ;z,τ)Bi(x+ r, t + τ)SF(x, t + τ ;y,τ)B†

i (z,τ)
⟩

where τ refers to the source time slice and Nr is the degeneracy of the displacement r with the same
r. In practice, the gauge configurations are fixed to the Coulomb gauge first. In order to increase the
statistics additionally, for each configuration we calculate T charm quark propagators SF (⃗x, t;τ) by
setting a wall source on each time slice τ , which permits us to average over the temporal direction
when calculating the two-point functions.

In the data analysis, the correlation functions C(H)(r, t) with different r are simultaneously
fitted using the function form

C(H)(r, t)≡ ∑
n=1

1
2mn

Z(H)
n (r)Z(W )∗

n e−mnt , (2.4)
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Figure 1: Plots of Φn(r) = 1
2mn

Z(H)
n (r)Z(W )∗

n with respect to r (in physical units) for three three lowest states
( the left panel is for the β = 2.4 case, and the right panel for β = 2.8 ), whose masses are fitted to be
3.091(9) GeV, 3.85(25) GeV and 4.51(13) GeV for β = 2.4, and 3.084(2) GeV, 3.776(72) GeV, and 4.43(10)
GeV for β = 2.8.

through the correlated minimal-χ2 fit method with the jackknife covariance matrix. Here the pa-
rameter Z(X)

n is defined as

⟨0|O(X)
i |Vn(p,r)⟩= Z(X)

n εi(p,r), X = H,W. (2.5)

Figure 1 shows the plots of Φn(r) = 1
2mn

Z(H)
n (r)Z(W )∗

n with respect to r (in physical units) for the
three lowest states (the left panel is for β = 2.4, and the right panel for β = 2.8), whose masses
are fitted to be 3.091(9) GeV, 3.85(25) GeV and 4.51(13) GeV for β = 2.4, and 3.084(2) GeV,
3.776(72) GeV, and 4.43(10) GeV for β = 2.8. From the figure one sees that Φ1(r) and Φ2(r)
damp more rapidly and are close to zero at r ∼ 0.3 fm where Φ3(r) is still relatively large. The
fitted masses and Φn signal that the two lowest states correspond to J/ψ and ψ(3686) and the third
state might be a special state of different internal structure from conventional vector charmonia.
In order to test the reliability of the fitting strategy mentioned above, we also carry out a similar
analysis to the correlation functions C(M)(r, t) of the spatially extended version of operator O(M) on
the β = 2.4 lattice. In the fitting procedure, we fix a maximal t (denoted by tmax) and vary the lower
bound tmin of the fit window. We find the masses of the three lowest states keep constant to some
extent for a series of tmin, as shown in the right panel of Fig. 2. We average the masses in this range
with each value weighted by its error and get the values m1 = 3.097(1) GeV, m2 = 3.679(19) GeV,
and m3 = 4.007(57) GeV, respectively. These three states may correspond to J/ψ , ψ(3686), and
ψ(4040). We also plot the Φn(r/a)’s (normalized as Φn(0) = 1) in the left panel of Fig. 2, where
one can find the radial node structure expected by the non-relativistic potential model.

Motivated by this observation, in order for the state to be identified more clearly, we combine
linearly the correlation functions C(H)(r, t) at two specific r1 and r2 as

C(ω, t) =C(H)(r1, t)+ωC(H)(r2, t) (2.6)

with ω a tunable parameter. The separations r1 and r2 are chosen with the requirement that the
signal-to-noise ratio is good enough and spectral weights of the corresponding correlation functions
are very different for the would-be conventional charmonia and the hybrid-like state. As such we
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Figure 2: Left panel: Φn(r/a)’s (normalized as Φn(0) = 1) of the three lowest states from fits to C(M)(r, t)
of the spatially extended version of operator O(M) on the β = 2.4 lattice. Right panel: Masses of the three
lowest states as functions of tmin.
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Figure 3: The effective mass plateaus of C(ω, t)’s for β = 2.4 and β = 2.8.

tune the parameter ω for C(ω, t) to have an effective mass plateau as long as possible. In Fig. 3 we
plot the effective mass plateaus of C(ω, t)’s for β = 2.4 and β = 2.8 with respectively optimally
tuned ω . The axes are labeled with the physical units. One can see that both the plateaus are laid on
each other at a mass of roughly 4.33 GeV. It is clearly seen in the above study that the hybrid-like
operator O(H)

i (x, t;r) couples surely preferable to the state with a mass of roughly 4.33(2) GeV,
which confirms our speculation based on the non-relativistic picture. With this observation, it is
highly conjecturable that this state is a hybrid-like charmonium.

Since this hybrid-like charmonium can be disentangled from the conventional charmonium
with the prescription above, its leptonic decay constant can be investigated accordingly. It is known
that the leptonic decay constant fV of a vector meson state V is defined by

⟨0|J(em)
µ (0)|V (p⃗,r)⟩= mV fV εµ(p⃗,r), (2.7)

where J(em)
µ (0) is the electromagnetic current and εµ(p⃗,r) is the polarization vector of V at mo-

mentum p⃗. For vector charmonium states, J(em)
µ (0) can be approximated by c̄γµc(0) according to

the Okubo-Zweig-Iizuka rule. On the lattice with a finite lattice spacing, the vector current c̄γµc(0)
in the continuum theory is not conserved any more and should be renormalized properly. We adop-
t the nonperturbative renormalization strategy proposed by Ref. [14] and get the renormalization

5
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β M(J/ψ)(GeV) fJ/ψ (MeV) M(ψhyb)(GeV) fψhyb (MeV)
2.4 3.076(4) 428(7) 4.43(7) 32(20)
2.8 3.082(1) 378(6) 4.40(7) 31(11)
Exp. 3.097 407(5) · · · · · ·

Table 2: Preliminary results of masses and decay constants of J/ψ and ψhyb.

constants Z(s)
V = 1.39(2) for β = 2.4 and Z(s)

V = 1.11(1) for β = 2.8 [13, 15], where the superscrip-
t s stands for the spatial components of the vector current. Note that the spatial components of
J(em)

µ (x) is exact the normal quark bilinear operator O(M)
i for vector mesons, so the matrix elements

in Eq. (2.7) can be derived from the corresponding correlation functions when the operator O(M)
i

is involved. Along with the vector current renormalization constant Z(s)
V , one can derive the decay

constant fV for a vector charmonium V if it can be singled out unambiguously.
In addition to C(H)(r, t), we also calculate other two categories of correlation functions,

C(J)(t) =
1
3 ∑

x,i
⟨0|Ji(x, t)O

(W ) †
i (0)|0⟩ ≡ ∑

n

1
2mn

Z(J)
n Z(W )∗

n e−mnt ,

C(W )(t) =
1
3 ∑

i
⟨0|O(W )

i (t)O(W ) †
i (0)|0⟩ ≡ ∑

n

1
2mnV3

Z(W )
n Z(W )∗

n e−mnt , (2.8)

where mn is the mass of the n-th state and the parameter Z(X)
n with X referring to J or W .

Accordingly the leptonic decay constant fVn can be derived from Z(J)
n from the definition E-

q. (2.7) as
fVn = Z(s)

V Z(J)
n /mn. (2.9)

In the data analysis stage, we carry out the simultaneous correlated minimal-χ2 fit to the correlation
functions C(J)(t), C(H)(r, t), and C(W )(t) using the function forms in Eqs. (2.4,2.8) with parameters
mn, Z(X)

n . The preliminary results of leptonic decay constants of J/ψ and ψhyb derived in this
kind of fit are given in Tab. 2 in physical units. The decay constant of J/ψ reproduces more or
less the experimental result fJ/ψ = 407(5) MeV on the two lattices. For the likely exotic vector
charmonium ψhyb, we get its decay constant as

fψhyb = 31(15) MeV, (2.10)

which is roughly one order of magnitude smaller than that of J/ψ , although the error is still very
large. Thus the leptonic decay width of the ψhyb state can be determined to be

Γ(ψhyb → e+e−) =
16π
27

α2
QED

f 2
ψhyb

Mψhyb

≈ 23(20)eV, (2.11)

which is much smaller than that of conventional vector charmonia (we use αQED = 1/134 at the
charm quark mass scale). If X(4260) is tentatively assigned to the ψhyb state investigated in this
study, according to the combined partial width

Γ(X → e+e−)Br(X → J/ψππ) = 5.5±1.0+0.8
−0.7 eV, (2.12)
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the branch ratio of X(4260) decaying into J/ψπ+π− can be estimated to be

Br(X(4260)→ J/ψππ)∼ 20(16)%, (2.13)

which means that J/ψππ is one of the most important decay modes of X(4260). This can naturally
explain the fact that X(4260) was only observed in this channel and does not show up the resonance
structure in the R-value scan around

√
s = 4.26 GeV.

3. Summary

By using spatially extended operators that reflect the hybrid picture to some extent, a hybrid-
like vector charmonium ψhyb with a mass of 4.33(2) GeV is disentangled from the conventional
vector charmonia. In addition, through a simultaneous multi-state fit to correlation functions built
from the vector current operator and the hybrid operator mentioned above, a preliminary result of
the leptonic decay constant of ψhyb is extracted to be fψhyb = 31(15) MeV, which gives a very small
leptonic decay width Γ(ψhyb → e+e−) = 23(20) eV. The mass and the leptonic decay width of ψhyb

are compatible with the production and decay properties of X(4260).
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