
P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
2
7
2

A high-statistics study of the nucleon EM form
factors, axial charge and quark momentum fraction

B. Jäger∗, T.D. Rae†, S. Capitani, M. Della Morte, D. Djukanovic, G. von Hippel,
B. Knippschild, H.B. Meyer, H. Wittig

PRISMA Cluster of Excellence and Institut für Kernphysik, Becher-Weg 45, University of Mainz,
D-55099 Mainz, Germany
Helmholtz Institute Mainz, University of Mainz, D-55099 Mainz, Germany
IFIC and CSIC, calle Catedratico Jose Beltran 2, 46980 Paterna, Spain
E-mail: jaeger@kph.uni-mainz.de, thrae@uni-mainz.de

We present updated results for the nucleon axial charge and electromagnetic (EM) form factors,
which include a significant increase in statistics for all ensembles (up to 4000 measurements),
as well as the addition of ensembles with pion masses down to mπ ∼ 195 MeV. We also
present results for the average quark momentum fraction. The new data allows us to perform a
thorough study of the systematic effects encountered in the lattice extraction. We concentrate
on systematic effects due to excited-state contaminations for each of the quantities, which we
check using several different time separations between the operators at the source and sink
through a comparison of plateau fits and the summed operator insertion method (which provides
a mechanism to suppress the excited-state contamination). We confirm our earlier finding
[1] that a reliable extraction of the axial charge must be based on a method which eliminates
excited-state contaminations. Similar conclusions apply to our EM form factor calculations
[2]. The measurements are calculated using the CLS ensembles with non-perturbatively O(a)
improved Wilson fermions in N f = 2 QCD.
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β a [fm] lattice L [fm] mπ [MeV] mπL Label # meas.
5.20 0.079 64×323 2.5 473 6.0 A3 2128
5.20 0.079 64×323 2.5 363 4.7 A4 3200
5.20 0.079 64×323 2.5 312 4.0 A5 4000
5.20 0.079 96×483 3.8 262 5.0 B6 2544
5.30 0.063 64×323 2.0 451 4.7 E5 4000
5.30 0.063 96×483 3.0 324 5.0 F6 3600
5.30 0.063 96×483 3.0 277 4.2 F7 3000
5.30 0.063 128×643 4.0 195 4.0 G8 4176
5.50 0.050 96×483 2.4 536 6.5 N4 600
5.50 0.050 96×483 2.4 430 5.2 N5 1908
5.50 0.050 96×483 2.4 340 4.0 N6 3784
5.50 0.050 128×643 3.2 270 4.4 O7 1960

Table 1: Details of the lattice ensembles used in this study, showing β -values, lattice spacing a (determined
in [21]), lattice extent L (where T = 2L), pion mass mπ and the total number of measurements.

1. Introduction

The axial charge of the nucleon is very well determined from experiment, gA = 1.2701(25) [3], and
provides a benchmark for Lattice QCD (LQCD) calculations, since it is constructed as a simple
matrix element from a local operator with quark bilinears, involves no momentum in the initial
and final states, and is an isovector quantity that has no quark-disconnected diagrams. However,
the results from lattice calculations are typically ∼ 10% below the experimental value [4]-[20].
It is therefore important to ensure that systematic effects are under sufficient control. We have
previously argued in [1] that this discrepancy can be explained by carefully accounting for excited
states, for which we use the summation method (described in section 3). Similar methods have been
used in [22]. This proceedings contribution provides an update to the results for our gA calculation
[1], and to our nucleon electromagnetic (EM) form factors results [2, 23, 24]. The EM form factors
are crucial observables in hadronic physics and provide details of the distribution of charge and
magnetisation in the nucleon, for which a similar discrepancy between the lattice and experiment
is seen as for gA [4, 5],[12]-[20],[22, 25]. In addition to the quantities previously calculated by
our group, we present first results for the quark momentum fraction 〈x〉 of the nucleon, which may
also be considered a benchmark quantity and tends to be overestimated in lattice calculations [16,
18, 20, 22], [26]-[30]. Our simulations use non-perturbatively O(a) improved Wilson fermions in
N f = 2 QCD, generated as part of the CLS effort. Table 1 provides details of the lattice ensembles.

The matrix element of a nucleon interacting with the axial current, Aµ = ψ(x)γ5γµψ(x), may be
decomposed into the axial and pseudoscalar form factors GA and GP:

〈N(p′,s′)|Aµ |N(p,s)〉= ū(p′,s′)
[

γµγ5GA(Q2)+ γ5
qµ

2mN
GP(Q2)

]
u(p,s), (1.1)

whereas for the electromagnetic current, V µ = ψ(x)γµψ(x), the matrix element may be parame-
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terised by the Dirac and Pauli form factors F1 and F2:

〈N(p′,s′)|Vµ |N(p,s)〉= ū(p′,s′)
[

γµF1(Q2)+ i
σµνqν

2mN
F2(Q2)

]
u(p,s), (1.2)

where u(p,s) is a Dirac spinor with spin s, and momentum p, γµ is a Dirac matrix, σµν = 1
2i [γµ ,γν ],

and Q2 =−(Ep′−Ep)
2 +~q2 where ~q = ~p′−~p. The Pauli and Dirac form factors are related to the

Sachs form factors GE and GM,

GE(Q2) = F1(Q2)− Q2

4m2
N

F2(Q2), GM(Q2) = F1(Q2)+F2(Q2), (1.3)

that are measured in scattering experiments via the differential cross section described by the
Rosenbluth formula. The form factors may be Taylor expanded in the momentum transfer Q2,

GX(Q2) = GX(0)
(

1− 1
6
〈r2

X〉Q2 +O(Q4)

)
, (1.4)

from which the charge radii of the nucleon may be determined:

〈r2
X〉=−

6
GX(Q2)

∂GX(Q2)

∂Q2

∣∣∣∣∣
Q=0

, (1.5)

where X = E, M. Note that GA(0) = gA and for the conserved current, GE(0) = 1 and GM(0) = µ ,
where µ measures the magnetic moment in nuclear magneton units e/(2mN).

The hadronic matrix element containing a single derivative can be related to the generalised form
factors A20, B20 and C20 through

〈N(p′,s′)|γ{µ
↔
Dν} |N(p,s)〉= ū(p′,s′)

(
γ{µQν}A20(Q2)

+ i
σ{µαQα pν}

2m
B20(q2)+

1
m

p{µ pν}C20(Q2)
)

u(p,s), (1.6)

where
↔
Dν=

→
Dν −

←
Dν , and A20(0)≡ 〈x〉 is the average quark momentum fraction.

2. Lattice formulation

The calculation of the form factors requires a ratio of correlation functions, for which we use

Rγµ
(~q, t, ts) =

C3,γµ
(~q, t, ts)

C2(~0, ts)

√
C2(~q, ts− t)C2(~0, t)C2(~0, ts)

C2(~0, ts− t)C2(~q, t)C2(~q, ts)
, (2.1)

where ~p′ = 0. This ratio was found to be the most effective ratio of several studied in [31]. In the
case ~p =~q = 0, which is relevant for gA and 〈x〉, eq. 2.1, simplifies as the square root factor equals
1. The two- and three-point functions C2(~p, t) and C3,γµ

(~q, t, ts) are given by (fig. 1),

C2(~p, t) = ∑
~x
〈Γα ′αJα(x)Jα ′(0)〉e−i~p.~x, (2.2)

C3,γµ
(~q, t, ts) = ∑

~x,~y
〈Γα ′αJα(~x, ts)Oγµ

(~y, t)Jα ′(0)〉e−i~q.~y, (2.3)
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0 x, ts
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u, d
O(y, t)

Figure 1: Schematic diagrams for the two- and three-point functions, left and right panels respectively.

where Jα(x) is a suitably chosen interpolating operator with the correct quantum numbers to create
a nucleon, and Γαα ′ is a projection matrix used to give the interpolating fields the correct parity.
We chose to polarise the nucleon in the z-direction, Γ = 1

2(1+ γ0)(1+ iγ5γ3). We consider both
local and conserved vector currents, where the latter is defined as

Ocon
µ (x) =

1
2

(
ψ(x+aµ̂)(1+ γµ)U†

µ(x)ψ(x)−ψ(x)(1− γµ)Uµ(x)ψ(x+aµ̂)
)

(2.4)

where ψ = u,d. In principle, we are able to determine the EM form factors and 〈x〉 for the proton
and for the neutron, depending on the linear combination of contributions from the quark cor-
relation functions. However, here we focus on the iso-vector combination for which the quark-
disconnected diagrams cancel. To improve the overlap of the interpolating operators with the nu-
cleon, we use Gaussian smearing [32], supplemented by APE smeared links [33], at both source
and sink.

The calculation of the three-point function involves the insertion of an operator at time t; to do
this we use the ‘fixed sink method’, which fixes the final and initial states whilst allowing both the
operator and momentum transfer to be chosen without the need for additional inversions [34]. Our
specific choice of kinematics ~p′ = 0, and thus ~p = −~q, allow us to extract all vector form factors
GE , GM, (F1, F2) as well as both the axial charge gA and 〈x〉 (when ~q→ 0) from eq. (2.1) at large
time arguments,

Rγ5γ3(~q = 0, t, ts) = gA, (2.5)

RO〈x〉(~q = 0, t, ts) = mN〈x〉bare, (2.6)

Rγ0(~q, t, ts) =

√
M+E

2E
GE(Q2), (2.7)

Rγi(~q, t, ts) = εi j p j

√
1

2E(E +M)
GM(Q2), i = 1,2. (2.8)

3. Systematics of extraction

In order to have an unbiased determination of the quantities of interest, the correlation functions
must have reached their asymptotic behaviour. If the asymptotic behaviour has not been reached
simple plateau fits will show a systematic trend that is dependent on the source-sink separations
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ts (fig. 2). A priori it is not possible to know the appropriate source-sink separation for a given
quantity, which also depends on the projection properties of the nucleon interpolating operators.

For all our ensembles we use four separate source-sink separations (∼ 0.6− 1.2 fm), and even
at the largest ts ∼ 1.1 fm it is not clear from a plateau fit that the contaminations from excited
states are sufficiently suppressed for an unbiased determination of the quantities. Therefore, for the
‘N6’ ensemble we extended the number of source-sink separations from four to six, increasing the
source-sink separation range up to ts/a = 28 (1.4 fm), see fig. 2. Even for this extended range, it
is difficult to determine that the data has reached the asymptotic behaviour, before the signal is lost
for the largest ts/a = 28, as can be seen from the systematic trend in the data sets. It is therefore
important to take the excited states into account to have a good handle on possible systematic errors.
The excited-state contributions to the ratio may be factorised from the ground state contributions,
so that

R(~q, t, ts) = R0(~q, t, ts)
(

1+O
(
e−∆t)+O

(
e−∆′(ts−t))), (3.1)

where ∆ and ∆′ are the energy gaps of the initial and final nucleons respectively. The method of
summed operator insertions [35],

S(ts) =
ts

∑
t=0

R(~q, t, ts)→ c(∆,∆′)+ ts
(

GE,M +O
(
e−∆ts

)
+O

(
e−∆′ts

))
, (3.2)

allows the form factors to be extracted from the slope after computing S(ts) for several ts. The
results for the summation method are overlaid in yellow in figs. 2 and 3 and tend to agree or are
minimally overlapping with the data for ts/a = 25, corresponding to ts = 1.25 fm, therefore indicat-
ing that the asymptotic behaviour has not yet been reached. A common method is to fit the largest
ts data with a plateau. However it is difficult, as mentioned, to know a priori if the source-sink
separation is ‘large enough’, whereas the summation method has the advantage that the excited
states are parametrically reduced and there is no need to fit a plateau to what can sometimes be
very noisy data, especially for large ts and large Q2. Also, the summation method only requires
linear fits, whereas any extension of plateau fits to include excited states would imply non-linear
(and therefore possibly unstable) fits.

Another important consideration besides the source-sink separations, is the question of: what is
‘enough’ statistics in order to satisfactorily resolve the desired quantity? To check this, on the
‘F7’ ensemble (mπ = 277 MeV), we show gA and GE

(
Q2 = (2π

La )
2
)

with both 1000 and 3000
measurements (fig. 3). The results for 1000 measurements suggest that the largest ts for the plateau
method is ‘large enough’ as the ts dependence appears to have saturated. However, when the
statistics are increased to 3000 measurements we clearly see that this is not the case, as indicated
by the reduced overlap between the summation method and the individual ts data sets in both
quantities.

4. Electromagnetic form factor Q2 dependence

For the discussion of the electromagnetic form factors we concentrate on the conserved current as
this removes the requirement of any renormalisation for the lattice operators; however, we note
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ts
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ts = 250.9

1

1.1

1.2

1.3
GE(Q

2 = 1)

ts
2

ts = 13
ts = 16

ts = 19
ts = 22

ts = 250.55

0.6

0.65

0.7

0.75

0.8

〈x〉bare

ts
2

ts = 13
ts = 16

ts = 19
ts = 22

ts = 250.15

0.2

0.25

0.3

0.35

0.4

Figure 2: gA, GE
(
Q2 = 1( 2π

La )
2
)

and 〈x〉bare for different source-sink separations, ts, indicated by the
legend. The summation method result is given by the yellow band. All panels are shown for our ‘N6’
ensemble (mπ = 340 MeV). Due to the large statistical noise the largest ts/a = 28 data has been removed.

that a comparison between the local and conserved current provides a check of the renormalisation
factor, which we find to be in agreement with other work (such as [36]).

To model the Q2 dependence of the form factors, shown for GE in fig. 4, we use a dipole ansatz

GE,M(Q2) = GE,M(0)
/(

1+Q2/M2
E,M
)2
, (4.1)

shown in fig. 5 (for the ‘O7’ ensemble, mπ = 270 MeV) for GE and GM alongside the Kelly pa-
rameterisation [37] of the experimental data. It should be noted that in order for the lattice data
and experimental parameterisation to be fully compatible a chiral extrapolation of the lattice data
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gA

ts
2

1000 meas.

ts
2

3000 meas.

GE(Q
2 = 1)

ts
2

1000 meas.

ts
2

3000 meas.
ts = 11
ts = 13
ts = 15
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1

1.1

1.2

1.3

1.4

ts = 11
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0.68

0.7
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0.76
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0.8

0.82

ts = 11
ts = 13
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Figure 3: Left panels: gA. Right panels: GE
(
Q2 = 1( 2π

La )
2
)
. For each the left sub panel shows the quantity

for 1000 measurements and the right sub-panel for 3000 measurements. Shown for the ‘F7’ ensemble
(mπ = 277 MeV).

GE(Q
2)

t[a]

0
1

2
3

4
5

6

0.4

0.6

0.8

1

2 6 10 14 18 22

Figure 4: GE for each Q2 = n( 2π

La )
2 where the legend gives the value of n. Shown for the largest ts ∼ 1.1 fm,

for the ‘O7’ ensemble mπ = 270 MeV.
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is required. In the case of GE we see a better agreement with the Kelly parameterisation [37] for
the summation method than for a plateau fit at the largest ts ∼ 1.1 fm, especially at large Q2. How-
ever, for the case of GM it is harder to disentangle the plateau and summation methods, and further
study is required to determine whether or not this is indicative that the asymptotic behaviour has
been reached, or if still more statistics are required. Due to the extra momentum factor required
in the extraction of GM (see eq. 2.8), its statistical accuracy is worse than that of GE . The charge
radii can be extracted from the dipole mass. However, due to the absence of a measured point at
GM(Q2 = 0), the determination of the radius, which is effectively the slope of the form factor at
Q2 = 0, is less constrained for 〈r2

M〉 than 〈r2
E〉, as can also be seen in fig. 5.

We may obtain the magnetic moment µ from GM(Q2 = 0) and also from the ratio

M(Q2) =
GM(Q2)

GE(Q2)
, where µ = M(0) = 1+κ (4.2)

shown in fig. 5. The effect of this ratio is to cancel the Q2 behaviour, indicating that the form
factors GE and GM have a very similar shape and hence their radii are quite similar. We can
therefore extract µ from a constant fit to the data, which is compatible within errors to GM(Q2 = 0)
for both the summation and plateau methods.

5. Chiral dependence of the EM form factors and axial charge

The ensembles listed in table 1 cover a range of pion masses, from 195 to 650 MeV, enabling us to
both perform extrapolations in the pion mass to the physical points and to check finite-volume and
discretisation effects for all quantities. All of the chiral dependence plots figs. 6 and 7 show the
data for different lattice spacings in different colours, given in the legend. The experimental value
is shown by a black cross at the physical point (yellow vertical line).

The individual data points in fig. 6 exhibit only a mild mπ dependence, and so a linear fit of the
form

A+Bm2
π , (5.1)

may be appropriate to model the gA data. To check the stability of the chiral extrapolation to the
entire pion mass range, we have applied a cut at mπ = 360 MeV, for which we see that the two
extrapolations agree very well within statistical precision. In addition we see no obvious finite-size
or discretisation effects; the latter has been checked with the addition of an a2 term to the fits. If
the excited states are taken into account via the summation method, we obtain a value for gA that is
compatible with the experimental result. By contrast, using the plateau method with a source-sink
separation of∼ 1.1 fm yields discrepancy with the experimental result [3], which is larger than 1σ ,
regardless of the pion mass range used for the extrapolation. Therefore, the summation method
provides strong evidence that excited states need to be sufficiently accounted for to reach agree-
ment with experimental values

The chiral dependence for 〈r2
E〉, 〈r2

M〉 and κ are shown in fig. 7. With the exception of 〈r2
M〉, the

comparison of the plateau and summation method indicates that, as for gA, it is necessary to account
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GM (Q2)
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exp. (Kelly 2004)
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plateau
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Figure 5: The top left and right panels show the Q2 dependence of GE and GM respectively, which may be
compared to the Kelly parameterisation [37] of the experimental data. The bottom panel shows M(Q2). The
lattice data is for the ‘O7’ ensemble mπ = 270 MeV.

for excited states. For 〈r2
M〉, we see that any extrapolations to the physical point will be strongly

dependent upon the most chiral point and we note that larger statistical errors and fluctuations
within the 〈r2

M〉 data are largely due to the absence of a point equivalent to GE(Q2 = 0) = 1, which
helps to constrain both the Q2 behaviour and the determination of the charge radius. As for gA, the
EM form factor data also shows no obvious finite volume or discretisation effects. We are currently
exploring the effect of other fit forms on the results in figs. 6 and 7, including ansätze based on
HBChPT, so as to have a comprehensive picture of the systematic effects. This will be commented
upon in a forthcoming paper [38].
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m2
π [GeV2]

m2
π,phys summation

gA

m2
π,phys plateau ts ∼ 1.1 fm

1

1.1

1.2

1.3

1.4

1.5
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a = 0.050 fm

1
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Figure 6: Chiral extrapolation of gA to the physical point (vertical yellow line). The black cross shows the
experimental result [3] and the different symbols indicate the lattice spacing (see legend). The blue band
shows a linear fit to the entire range, whereas the red band shows a linear fit with a mass cut at mπ = 360 MeV.

6. Conclusions and outlook

We have presented preliminary results for the nucleon’s axial charge, vector form factors and quark
momentum fraction with a focus on systematic errors due to excited state contaminations. Chiral
extrapolations for the axial charge show that the use of the summed insertions method effectively
accounts for contaminations from excited states, leading to good agreement with experiment. How-
ever, whilst we note that we are still analysing the chiral behaviour for this and the electromagnetic
form factors, our data indicates that with sufficient statistics excited-state effects can be resolved
and we present evidence that the summation method is an important tool to control the associated
systematic errors. Further to this, we see no obvious finite size or discretisation effects in our data
for all quantities.

For the average quark momentum fraction 〈x〉, which we have, so far, only evaluated at the bare
ratio level, we see a similar effect as is seen for the EM form factors and axial charge, and conclude
that excited-state effects appear to be equally important here, and reliably controlling them could
help improve agreement with experiment as has proven to be the case for most of the other quanti-
ties discussed here. The average quark momentum fraction will be fully analysed including chiral
fits, once a calculation of the required renormalisation constants using a non-perturbative scheme
is completed.
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Figure 7: Chiral dependence of 〈r2
E〉, 〈r2

M〉 and κ . The vertical yellow line shows the physical point and the
black cross the experimental result [3]. The different symbols indicate the lattice spacing (see legend).

The axial charge and form factors analysis is in the process of being finalised and will appear in
an upcoming publication [38], therefore all results in this proceedings should, at the moment, be
considered preliminary.
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