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1. Introduction

The nucleon axial charge g4 is a well-measured quantity extracted from neutron - decay
experiments. The nucleon light ozy term is extracted from N scattering phase shifts combining
experimental measurements and phenomenology. The nucleon strange content ¢ is extracted in a
similar manner using the kaon N scattering phase shifts, which however are difficult to measure and,
furthermore, chiral perturbation theory may not be applicable. For other particles, these quantities
are either poorly known or their values are not known experimentally. Assuming SU(3) flavor
symmetry one can obtain useful relations among the axial charges of hyperons. Such relations are
used as input in low-energy effective theories [1, 2] and it is therefore important to test the degree
of their validity. Lattice QCD provides the appropriate framework to calculate these quantities for
all baryons. In this work, we thus focus on computing the ¢ -terms and axial charges for hyperons
and charmed baryons.

While the evaluation of the nucleon axial charge g4 has been carried out by a number of lattice
QCD collaborations [3] the axial charges of other baryons are not so well studied. The focus of this
work is to evaluate the axial charges and o-terms, which are extracted from matrix elements at zero
momentum transfer. Since we are interested in evaluating matrix elements for any baryon, the fixed
current method is the appropriate approach yielding with one sequential inversion per quark flavor
the axial charges of all baryons. An additional sequential inversion per quark flavor is carried out
to extract the o-terms. In order to avoid additional sequential inversions are for every operator we
study a new method for computing hadron matrix elements using a stochastic method to calculate
the all-to-all propagator entering the three-point function. We will refer to this alternative method
as the stochastic method, which is extremely versatile as compared to either the fixed sink or fixed
current approaches conventionally employed in three-point function computations. The advantage
of the stochastic method is that once the all-to-all propagator is computed one can obtain the matrix
elements of any hadron and for any operator.

2. Tuning the strange and charm quark mass

We use Ny =2+ 1+ 1 twisted mass fermions (TMF) configurations simulated at § = 1.95.
The action we employ introduces a twisted heavy mass-split doublet for the strange and the charm
quark

S ™, 2™ U] = a* Y 7" (x) (Dw [U] 4 mo + itto 15! + T05) 2 (x), @2.1)

where my is the bare untwisted quark mass, (U is the bare twisted mass along the 7! direction and
U is the mass splitting in the 73 direction [4]. For the valance sector we use Osterwalder-Seiler
fermions and, therefore, we need to tune the strange and charm mass. The tuning is performed by
matching the mass of the kaon and D-meson in the unitary and mixed action setups. To perform
the matching we vary the mass of the strange and charm quarks and fit the resulting masses using
the following polynomial form [5]

a*Mpg(apy,apty) = ar (t + wn) + az( + W) +az(t -+ pa)® +as( + ) (g — 1), (2.2)

where y; is the mass of the u- and d- quarks as used in the simulation and L is varied in a range
that includes the kaon and D-meson mass. The resulting fit can be seen in Fig. 1 covering the whole
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range of masses from the kaon to the D-meson mass. As a consistency check we also perform a fit
to a smaller range in ayt;, close to the kaon mass using aZMIZ,S(aus) = c1 + c2all; and independently
around the D-meson mass using aMps(all.) = d| + drap, as shown in the right panel of Fig. 1. We
find aps, = 0.01671(18)(28) and ap, = 0.2195(15)(10), where the first error is statistical and the
second systematic determined as the difference between the value extracted from the polynomial
fit over the whole range of heavy masses and the one extracted from the linear fit over the range
shown in the right panel in Fig. 1
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Figure 1: Pseudoscalar mass as a function of ayy,. Left: Fit to the polynomial given in Eq. (2.2).
Right: Linear fit around the range of the kaon mass (upper) and around the D-meson mass (lower).

3. Axial charges

The axial charge g4 is a fundamental quantity of the structure of a hadron. Within lattice QCD
the calculate the axial charge for any hadron, is extracted from the matrix element of the axial-
vector current, Ai = Y(x)yu ¥ (x) at zero momentum transfer: (h(p')|Ay|h(p)). SU(4) flavor
symmetry leads to two 20-plets of spin-1/2 and spin-3/2 baryons, for which we calculate the axial
charges using the interpolating field given in Ref. [2] including a spin-3/2 projection, which is
found to be important in the case of the &*s. Assuming SU(3) flavor symmetry the axial charges of
the low-lying octet baryons obey the following relations [1]

g\ =F+D, gf=2F, gi=—-D+F = 8y =8y —g1+8 =0. 3.1)
We examine how well SU(3) flavor symmetry is satisfied for unequal quark masses by computing
the SU(3) symmetry breaking parameter 5SU(3). In Fig. 2 we plot 55U(3) as a function of the
dimensionless parameter x = (m% —m2)/(4w%f2). In the plot we include results obtained using
a hybrid action of staggered fermions and domain wall valence quark that includes a calculation at
the SU(3) flavor symmetric limit [6]. Performing a chiral extrapolation using dgy(3) = ax? we find
that the deviation from SU(3) flavor symmetry at the physical value of the strange quark mass is
around 10%.

One can also compute the axial charges of baryons belonging to the decuplet. We show in
Fig. 2 two representative examples of the light and strange quark contribution to the axial charge
of the Q~ and the A" computing only the connected contributions. For Q~ the value increases as
we approach the physical pion mass. A linear fit to m2 yields a good fit to the data and provides a
prediction of the strange axial charge of these baryons.



Sigma-terms and axial charge for hyperons and charmed baryons

Kyriakos Hadjiyiannakou

0.25 ) ‘
Fit to TMF 0'8
Fit to all
0.2+ H ?r/llg $ 7 ‘ %
y - %
: il | }
| : :
E % } | 205

1 e | 27 % %
E % }

i + I B 1-97
Physical Point |
. . . . . . | . 1.85 ‘ ‘ ‘ ‘ ‘
-0.05 0 005 01 015 0.2 025 03 035 04 0 (mDpnys  0.04 ) 0.12 0.16

x MmAGeV?)

2 2

Figure 2: Left: 8gy3) versus x = (mg —m3) /(47 f7). Filled red circle are TMF results and filled
blue squares are results using a hybrid action [6]. Right: Isovector axial charge of the A" and the

connected contribution to the strange axial charge of the Q™ versus m
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Figure 3: The axial charge as a function of m2 for E:* (left) and Q’F (right).

Using the same techniques we compute the axial charges of charmed baryons whose values
are not known. The interpolating fields are given in Ref. [7].

We show in Fig. 3 two representative examples of the strange and charm quark contribution to
the axial charge of the Z'* and the Q} as a function of mZ2. An interesting feature is that the light
and strange quark contributions to th e axial charge of charmed baryons increase as the pion mass
approaches the physical value while for the charm content decreases.

4. o-terms

Experimental searches for cold dark matter need as input the strength of the interaction be-
tween a WIMP and a nucleon mediated by a Higgs exchange. Thus a reliable calculation of
the nucleon o-terms provides an important input for these experiments. There are phenomeno-
logical determinations of the value of oy, as well as, lattice QCD calculations mainly using
the Feynman-Hellman theorem [8], but also by directly calculating the nucleon matrix element
Oxn = my(N|iu+dd|N) [9, 10]. In this work, we compute the matrix element o, = m, (h|py|h)
for all low-lying baryons belonging to the two 20-plets of SU(4).
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Figure 4: The ratio R(t;,s,;) which yields the o-term as a function of (¢, — #;,5) /a for the nucleon
(left) and for the strange (upper) and charm (lower) content of the Qs (right).

In Fig. 4 we show the ratio of the three-point function to the two point function R(fjus,t,) =
%&”A)’“) for representative cases for the light, strange and charm quark content, considering only
connected contributions. In the fixed current approach one needs to fix the time separation between
current insertion and source, taken at zero, t;,;. Since this observable, unlike the axial charge,
receives large excited state contributions we need to ensure that ¢;,; is sufficiently large so that the
excited states are damped out before we extract the value of o by fitting to a constant. We show
the ratio as a function of #; — t;,; in Fig. 4 for three values of #;,,;. As can be seen t;,; = 7a yields
consistent results with those for f;,; = 9a. This is true for oy, as well as, for the strange and charm
content of the Qs. Thus, we fix #;,; = 7a. In Fig. 4 we show the strange quark contribution to the
Q™ which has three strange quarks, Q0 with two strange quarks and Q" with one strange quark.
As can be seen the strange quark contribution triples for Q™ as compared to Q" as expected. The
same is true also for the case of the charm contribution to the o-term.

5. Stochastic Method for connected diagrams
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Figure 5: Fixed sink (left), fixed insertion (center) and stochastic method (right). With green lines

we depicted the part of the diagram which is used as a source for the sequential inversion and with
yellow the sequential propagator.

In Fig. 5 we show diagrammatically the fixed sink and current methods that are used in the
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calculation of three-point functions. The former requires us to fix the sink i.e. the hadron state
and the latter the operator insertion. In order to be able to compute the three-point function for
every hadron state and current insertion we examine a third approach that computes the all-to-all
stochastically [11]. Within this approach the all-to-all propagator is written in terms of a solution
vector @(x) and a noise vector &(y) with the consequence that the double sum involved in the
calculation of three point functions becomes two single sums:

PR i : 1R —ipE i :
Zy‘,;e ¢ PG ey)IG(:0) — = ; (Zx‘,e ¢,(x)> (%‘,e £ (y)FG(y,O)) (5D
This makes the calculation via the stochastic method feasible, provided the number of noise vectors
N, needed is small enough. In Fig. 6 we compare results using the stochastic method to those
obtained using the fixed sink method. The comparison is done using 500 gauge configurations of
Ny =2+1+1TMF at pion mass 373 MeV. We invert at every f; (time dilution) and consider spin
and color dilution. Thus for a given #; we need 12 inversions per noise vector which is the same as
the number of inversions need to obtain the sequential propagator.
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Figure 6: Electromagnetic (left) and axial (right) form factors versus 0>

In Fig. 6 we show results on the nucleon electromagnetic and axial-vector form factors using
N, =2,4 and 6. The results obtained using the stochastic method show good convergence obtaining
when using N, =4 and N, = 6 values that are consistent with those obtained with the fixed sink
method for all cases except the electric form factor, which requires N, = 6. Taking N, = 6, means
that the stochastic method needs six times more inversions to achieve the accuracy of the fixed sink
method. However, the stochastic method is more versatile and we can extract more measurements
without additional inversions that over-compensate for this factor of six. To understand the gain we
consider the cost needed to evaluate the axial form factors.

In the case of the stochastic method to use three different projector Iy, k =1,---,3 needs no
extra inversions unlike the fixed-sink method. In Table 1 we compare the results obtained using
the summed projector Zi:] I’y with the fixed sink method, which requires one inversion per quark
flavor, with those obtained using the stochastic method. We find about 3 times the error when using
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Projectors | States | # N, | # Inversions | Err(Stoch)/Err(Fixed Sink)
Fixed Sink | Y3_ T p - 24 -
Stochastic | Yi_ Ty p 2 2x24 ~3
Stochastic | I'j,1%,13 p,n 2 2x24 ~1

Table 1: The number of inversions and the resulting ratio of the error of the stochastic method to
that of the fixed sink method for the summed and unsummed spin projectors I'.

the stochastic method with N, = 2, which is twice as expensive as the fixed sink method. However,
in the stochastic method we can use the unsummed projector, which carries less noise than the
summed one, and average over proton and neutron without extra cost reducing the error by a factor
of about 3. Thus, in the case the nucleon the cost is twice that of the fixed sink technique for a fixed
error. Thus, considering even only two hadron states we break even. Given that we can compute
all form factors for the 40 SU(4) particles with no additional inversions shows the superiority of
the stochastic method.

6. Conclusions

In this work we present results on the o-terms and axial charges for the two SU(4) 20-plet
baryons. We study the SU(3) flavor breaking and the behavior of the o-terms as we vary the
number of quarks. For the extraction of the axial charges and o-terms we use the fixed current
method. To avoid the limitations of the fixed current or sink methods which additional inversions
for each operator or hadron state (spin projection) respectively we tested a stochastic method to
calculate the all-to-all propagator involved in the computation of connected three-point function.
This method shows a very fast convergence to the results of the fixed sink method, and for the
case of the nucleon axial charge, it is only twice as expensive. Therefore, it can be considered
as an alternative approach for the calculation of three-point functions, in particular when we are
interested in matrix elements of more than one hadron.
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