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We present preliminary results from the first calculation of the pion electromagnetic form factor at
physical light quark masses. This form factor parameterises the deviations from the behaviour of a
point-like particle when a photon hits the pion. These deviations result from the internal structure
of the pion and can thus be calculated in QCD. We use three sets (different lattice spacings) of
n f = 2+1+1 lattice configurations generated by the MILC collaboration. The Highly Improved
Staggered Quark formalism (HISQ) is used for all of the sea and valence quarks. Using lattice
configurations with u/d quark masses very close to the physical value is an advantage, as we avoid
the chiral extrapolation. We study the shape of the vector ( f+) form factor in the q2 range from 0
to −0.12 GeV2 and extract the mean square radius, 〈r2

v〉. The shape of the vector form factor and
the resulting radius is compared with experiment.
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Figure 1: Dependence of the charge mean square radius on the pion mass. Note that we plot the radius as a
function of ln(m2

π), not m2
π . The experimental result is from [3] and the ETMC lattice results are from [1].

1. Motivation

The electromagnetic form factor of the charged π meson parameterises the deviations from
the behaviour of a point-like particle when struck by a photon. These deviations arise from the
internal structure of the pion: constituent quarks and their strong interaction. The form factor can
be calculated in Lattice QCD, but it is desirable to work at the physical pion mass to avoid chiral
extrapolation. Plots of lattice determinations of the pion charge radius as a function of pion mass
– like Fig. 1, or Fig. 11 in [1] or Fig. 4 in the very recent review paper [2] – show very clearly
that the extrapolation to physical pion mass plays a key role, if the pion masses one works at are
much heavier than the physical mass. On the experimental side, the vector form factor has been
measured by NA7 collaboration [3] in a π – e scattering experiment, which allows a comparison
between theory and experiment.

2. Lattice configurations

We use the n f = 2+1+1 HISQ (Highly Improved Staggered Quark) physical pion mass lattice
configurations provided by MILC Collaboration [4]. Three ensembles (different lattice spacings)
are used in this study – see details in Table 1. We use the HISQ action for valence quarks as well,
and using the same light quark mass as in the sea. We have Lmπ ≈ 4 for the coarse (a = 0.12 fm)

and fine (a = 0.088 fm) lattices, so finite volume effects are expected to be very small. We have
good statistics with 1000 configurations (for the very coarse and coarse ensembles) and four time
sources per configuration.

3. Form Factors

On the lattice, form factors are extracted from 3-point correlators – see Fig. 2. We have two
pseudoscalar mesons, the initial and final state pions, time T apart, and we use a 1-link spatial
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Set a/fm aml ams amc mπ /MeV (L/a)3×Lt/a Nconf T/a
1 0.15 0.00235 0.0647 0.831 133 323×48 1000 9, 12, 15
2 0.12 0.00184 0.0507 0.628 133 483×64 1000 12, 15, 18
3 0.088 0.00120 0.0363 0.432 128 643×96 223 16, 21, 26

Table 1: Details of the MILC 2+1+1 flavor lattice configurations used in this study. Set 1 is very coarse, set
2 is coarse and set 3 is fine ensemble. The second column is the lattice spacing ([5], using w0 to determine
the scale) and columns 3-6 list the sea quark masses and the pion mass. Columns 7 and 8 give the size of
the lattice and the number of configurations used. Four time sources are used per configuration to get good
statistics. T in the 9th column is the separation between the initial and final state mesons. We use multiple
values of T to improve extraction of the ground state matrix elements.

t’

ππ

T

t

J

π("p1) π("p2)

Figure 2: 2pt and 3pt correlation functions. J denotes the current, p1 is the momentum of the initial pion
and p2 is the momentum of the pion in the final state. Three different values of T , the separation between
the initial and final state mesons, were used in this study.

vector current (in the staggered formulation we need a 1-link operator to make a taste singlet, as
both pions are Goldstone mesons). A phase at the boundary (twisted boundary condition, [6]) is
used to give the quarks momentum: a twist

Φ(x+ ê jL) = ei2πθ j Φ(x) (3.1)

is equivalent to the quark having a momentum

p j =
2πθ j

L
. (3.2)

θ can be tuned to get the desired q2, the four-momentum transfer defined as

q2 = (E(~p2)−E(~p1))
2− (~p2−~p1) · (~p2−~p1). (3.3)

We calculate the form factor f+(q2) in the space-like (negative) region of q2 near zero (this is the
range where experimental data is available). In addition to the 3-point correlators we also need the
amplitudes (and energies) from the meson 2-point correlators.

4. Fitting the correlators

We fit the 2-point and 3-point correlators simultaneously. We use multi-exponential fits to
reduce systematic errors from the excited states, varying the number of exponentials. We take a
fit that gives a good χ2 and check that increasing the number of exponentials does not change the
result. The preliminary results presented in this paper are from a 5 exponential fit. Bayesian priors
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are used to constrain the fit parameters. We fit all q2 values simultaneously to take into account the
correlations. The fit functions for the 2-point correlators are of the form

C2pt(p, t) = ∑
i

b2
i (~p)fn(Ei(~p), t)+∑

i
b′i

2
(~p)fo(E ′i(~p), t) (4.1)

with

fn(E, t) = e−Et + e−E(Lt−t),

fo(E, t) = (−1)t/a[e−Et + e−E(Lt−t)]. (4.2)

Here “fn” are the “normal” states and “fo” are the opposite parity states that appear due to staggered
quark formulation. The 3-point correlators are fitted with

C3pt(~p1,~p2, t,T ) =∑
i, j

bi(~p1)fn(Ei(~p1), t)Jnn
i, j (~p1,~p2)b j(~p2)fn(E j(~p2),T − t) (4.3)

−∑
i, j

bi(~p1)fn(Ei(~p1), t)Jno
i, j (~p1,~p2)b′j(~p2)fo(E ′j(~p2),T − t)+(n↔ o). (4.4)

Note that the amplitudes bi and the energies Ei, E ′i are the same as in the 2-point correlators.

5. Vector form factor

The matrix element relevant for the pion form factor is

〈π(~p1)|J|π(~p2)〉= Z
√

4E0(~p1)E0(~p2)J0,0(~p1,~p2), (5.1)

where J0,0 is the ground state amplitude of the 3-point correlator. The form factor f+ is related to
the matrix element as

〈π(~p1)|Vi|π(~p2)〉= f+(q2)(~p1 +~p2)i. (5.2)

A renormalisation constant Z is needed for the vector current: we normalise the current by demand-
ing that f+(0) = 1. Our results for the form factor as a function of q2 for different lattice ensembles
are shown in Fig. 3 along with the experimental data points.

6. Continuum extrapolation

We do a simultaneous extrapolation to zero lattice spacing and physical pion mass by fitting
the results from the very coarse, coarse and fine lattice to the pole form

f (q2) =
1

1−q2〈r2〉/6
(6.1)

allowing for a2 and mπ dependence:

〈r2〉= A(1+Ba2 +Ca4)+ cJ ln(m2
π/µ

2), (6.2)

where A,B,C are fit parameters and cJ = 1/(8π2F2) is a fixed constant from NLO chiral perturba-
tion theory (here F is the pion decay constant in the chiral limit). The form factor extrapolated to
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Figure 3: Shape of the pion electromagnetic form factor. Experimental results by NA7 Collaboration are
from [3], lattice results by HPQCD from this work. The lines with error bands are from fits to experimental
data (grey colour, fit from [3]) and to our lattice results (red colour, this work).

real world is then the a = 0, physical mπ part of the fit function, also shown in Fig. 3 with the error
bands. The chiral log gives only a very small correction, as the pion masses are very close to the
physical value. The slope at q2 = 0 gives the mean square value of the charge radius:

〈r2
v〉= 6

d f+(q2)

dq2 |q2=0. (6.3)

Our preliminary result is 〈r2
v〉= 0.40(3) fm2. Comparison to other lattice calculations and experi-

ment in Fig. 4 shows good agreement.
The form factor f+(q2) can be viewed as a Fourier transform of the electric charge distribution.

Hence the charge density can be calculated from the vector form factor once its functional form is
known. In the non-relativistic limit the charge density is

ρ(R) =
3

2πR〈r2
v〉

exp

(
− R√

〈r2
v〉/6

)
(6.4)

Using our result 〈r2
v〉= 0.40 fm2 gives the charge density plotted in Fig. 5.

7. Summary

We have presented here preliminary results from a full Lattice QCD calculation of the pion
vector electromagnetic form factor at physical pion mass. The use of twisted boundary conditions
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Figure 4: Vector mean square radius. The experimental result is from [3], and the HPQCD result is from
this work. Other lattice results are from [7, 1, 8, 9, 10] (from left to right). n f is the number of flavors and
mmin

π is the smallest pion mass used in that calculation. The results shown here are each group’s final result
after continuum and chiral extrapolation.

Figure 5: Non-relativistic charge density calculated using the pole form and 〈r2
v〉 from our fit. We omit z

direction here for clarity and plot the charge density against x and y.
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allows us to calculate the form factor in the q2 range from 0 to −0.12 GeV2 where experimental
data is available. We also determine the charge radius: our preliminary result is 〈r2

v〉= 0.40(3) fm2.
Comparison with experiment shows very good agreement.
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