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1. Introduction

Transverse momentum-dependent parton distribution ifume{1] (TMDs) encode informa-
tion about the distribution of transverse (as well as lardjital) momentum among partons in
a hadron, as extracted from physical processes such asirsg#usive deep inelastic scattering
(SIDIS) or the Drell-Yan (DY) process. Isolating hadrorusture information in terms of distri-
bution functions of this type requires a factorization feamork which allows one to disentangle
that information from other components of the process atlh&or processes containing multiple
hadrons in both initial and final states, factorization kieg contributions may exist [2], the quan-
titative importance of which is yet unclear. For SIDIS and, DX the other hand, factorization does
not seem to face serious obstacles, one possible approdcly lheen advanced in [3-5], although
potential issues regarding the analysis of azimuthal asgtm@s have recently been noted [6].

A schematic illustration of the principal elements invalvie a description of SIDIS is given by
Fig. 1; they include the hard, perturbative vertex, a TMDagtieg the structure of the nucleon, and
a fragmentation function describing the hadronizationhef $truck quark. It is important to note
that factorization does not necessarily imply that TMDs kbardefined completely independent of
the process in which they are embedded. In particular, asradécated in Fig. 1, final-state gluon
exchanges between the struck quark and the hadron remrasitvdly influence the description of
SIDIS (in the DY process, initial-state interactions playamalogous role). Including these final-
state interactions also modifies the momentum distribatemcoded in the TMDs; the manner in
which they formally enter the theoretical definition of TMR4I be elucidated further below.

These final state effects are important in that they break-tieversal invariance and thus
generate nontrivial T-odd TMDs, leading to correspondingudar asymmetries in experimental
cross sections. Signatures of this kind have indeed beema@asexperimentally [7]. Nevertheless,
despite the process dependence introduced by accountisgdio effects, a “modified universality”
across different process types can be retained in a suftatit@ization scheme. Specifically, SIDIS
and DY can be parametrized by the same TMDs, up to a changgnnrsiT-odd TMDs [8].

The project presented here focuses on connecting the plegrdmgical definition of TMDs,
introduced below, to a concrete lattice QCD calculatiortilesne, on the basis of which selected
TMD observables are evaluated from first principles. Inipalar, exploratory results for the T-odd
Boer-Mulders transverse momentum shift in the pion arergitieus expanding on the initial study
of nucleon TMDs reported in [9].
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Figure 1: lllustration of the elements of SIDIS factorization. Thevkr shaded bubble represents the struc-
ture parametrized by TMDs.
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2. Definition of TMD observables

The fundamental correlator defining quark TMDs is of the form

d%r rd(b-P) . . 'l (bPS..)
] _ P ) unsubtr,
o (x kr,PS...) = /(2n)2/(2n)P+ exp(ix(b- P) — ibr -kr) | 2.1)
with 1
Plasuon(D:P:S ) = (RS G(0) I 2[0,nv.nv-+ b.b] g(b) [P.§ 2.2)

The standard phenomenological description employs a itofeame in which the hadron of mass
my, propagates with a large momentum in 3-directiBr,= (P° + P%)/v/2 >> my,; then, the quark
momentum components scale such that the correlator (2dLYEtDs derived from it are princi-
pally functions of the quark longitudinal momentum fractio= k™ /P and the quark transverse
momentum vectokr, with the dependence on the componknt= (k° — k%) /v/2 < m, becom-
ing ignorable in this limit. Correspondingly, (2.1) is redad as having been integrated oker,
thus, in the Fourier transform, the conjugate compohenis set to zero, as written. The hadron
momentum and spin are denoted®wndS, andl” stands for an arbitrary-matrix structure. The
ellipsis in®!(x, kr,P,S,...) indicates that the correlator will depend on various furfi@ameters,
related, e.g., to regularization, specified below as neededristically, one can view the Fourier-
transformed bilocal quark bilinear operator as countingrksi of momentunk in the hadron state,
with I controlling the specific spinor components involved. Hogregauge invariance addition-
ally enforces the introduction of a gauge connectibnthe precise path of which will be specified
presently. The presence @f introduces divergences additional to the field renormadna of the
quark operators (this is indicated by the subscript “unsiypthese divergences accordingly must
be compensated by the additional “soft factof’ Here,.# will not need to be specified in detail,
since only appropriate ratios in which the soft factors eamdll ultimately be considered.

The gauge link structur@’ plays a natural role in the correlator (2.2), providing aigkehfor
incorporating the final state gluon exchanges betweenkstjugrk and hadron remnant discussed in
connection with Fig. 1. An effective resummation of thederactions yields a Wilson line which
approximately follows the trajectory of the struck quarlgse to the light cone. The correlator
(2.2), representing the squared amplitude of the physicaigss, thus has parallel Wilson lines
attached to both of the quark operators, extending to lagjarttes along a directionclose to the
light cone; at the far end, these lines are connected by akMiise in theb direction to maintain
gauge invariance. The result is the staple-shaped cooneztiO, nv,nv+ b,b], where the path
links the positions in the argument @f with straight line segments, amdparametrizes the length
of the staple. Formally, it is the introduction of the adufial vectorv which breaks the symmetry
under time reversal and thus generates T-odd TMDs.

At first sight, the most convenient choice for the stapleddiom v would seem to be a light-like
vector. However, beyond tree level, this introduces rapidivergences which require regulariza-
tion. One advantageous way to accomplish this is to takghtly off the light cone into the
space-like region [3, 4], with perturbative evolution etijpras governing the approach to the light
cone [5]. This scheme features the modified universalitydaidl to further above; the SIDIS and
DY processes are connected by inversiow,ahducing the proper sign change in T-odd TMDs. A
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scheme in whiclv (along with the quark operator separatigris generically space-like is also at-
tractive as a starting point for the development of thedat@QCD calculation, as will be discussed
below. A useful parameter characterizing how clesis to the light cone is the Collins-Soper
evolution parametef =v-P/(]v||P|), in terms of which the light cone is approached for> o.
Decomposing the correlatab!” (x,. kr,P,S,...) into the relevant Lorentz structures yields the
TMDs as coefficient functions. Whereas in the nucleon cdsg léads to eight distinct leading-
twist TMDs, in the simpleS= 0 pion case investigated here, only two leading-twist TM&mgain,
namely, the unpolarized TMB, and the T-odd Boer-Mulders TMB, given, respectively, by

ol — 1, lio vl _ Eikip 2.3)

My
The latter characterizes the distribution of transverpelarized quarks in the (unpolarized) pion.
On the other hand, also the position space correl@ﬁgubm cf. (2.2), which represents the
guantity amenable to lattice evaluation, can be decompasabbgously in terms of invariant am-
pIitudesﬂiB. Again, forS= 0, only two amplitudes from the full set obtained for nonezspin [9]
remain,

1 -~ ~ 1 ~jigir . ~
zpﬁq)tfs]ubtr.:AzB op+ Egsugil]'.zlmﬂsijbjMB (2.4)

These amplitudes are useful in that they can be evaluatedyidesired Lorentz frame, including
one particularly suited for the lattice calculation. Inwief (2.3), they are clearly closely related
to Fourier-transformed TMDs. Performing the correspogditgebra, and specializing, for the
purposes of the present investigation, to the loweasbment by choosing-P = 0, one has

fEO®2,Z.....nv-P) = 2Ap(~b2,b-P=0,{,nv-P)/.7(K,...) (2.5)
Hi[l](l)(b?ﬁZv -, NV P) = Z&B(_b'zl'vb' P= O,Z,er' P)/‘?(bzv ) (26)
where the generic Fourier-transformed TMD is defined as
- nor1 ,
fM B2 ) =n! ~ 24, dx [ d?kp €PTKT F(x KZ,..)) (2.7)
%)

The bt — 0 limit formally yields kr-moments of TMDs. However, this limit contains additional
singularities, which one can view as being regulated by #efimi. Here, results will only be
given at finitebr. It is important to note the presence of the soft factefson the right-hand
sides of (2.5) and (2.6). Absent an evaluation of these sofofs, which themselves depend on
b2, one cannot directly Fourier-transform the amplitu@@ extracted from a lattice calculation
back to momentum space to obtain the original TMDs defined.®)( On the other hand, one can
construct an observable in which the soft factors canceldmgnalizing the (Fourier-transformed)
Boer-Mulders function (2.6) by the unpolarized TMD (2.5hiah essentially counts the number
of valence quarks. Thus, one defines the “generalized Bagddvs shift”
fLA(1) 2 A 207
<kY>UT(b%7"') = mn% = mn@B(—b;,O,{,r]V-P) (2.8)
f(02,..) Axg(—bg,0,{,nv-P)
which is the regularized, finiter generalization of the “Boer-Mulders shift”

hP00,.)  [dxfd?ke k@Y O ke P )
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(2.9)
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which, in view of the right-hand side, formally represerite tiverage transverse momentum of
guarks polarized in the transversd {J direction orthogonal to said momentum in an unpolarized
(“U™) pion, normalized to the corresponding number of valengarks. In the interpretation of
(2.9), it should be noted that the numerator sums over thgibations from quarks and antiquarks,
whereas the denominator contains the difference betweark gund antiquark contributions, thus
giving the number of valence quarks. Note furthermore thtbs of the type (2.8) also candel
independent multiplicative field renormalization conssaattached to the quark operators in (2.2)
at finite physical separatidn

3. Lattice evaluation and results

The formal framework laid out above provides all the neagsséements for a lattice QCD
evaluation of the generalized shift (2.8). The path towadhils observable proceeds via the cal-
culation of pion matrix elements of the type (2.2), yieldithg relevant invariant amplitudé&B
via (2.4). This requires a setting in which the four-vectomndv are generically space-like: The
standard scheme for obtaining matrix elements such as ¢p&¥ates with (ratios of) Euclidean
space-time correlators, in which evolution in Euclideanetiserves to suppress pion excited states
between, on the one hand, pion source and sink and, on thehathd, the operator inserted at an
intermediate Euclidean time. In this scheme, only matrexrednts of operators defined at a single
Minkowski time are straightforward to evaluate; finite Mavkski time separations in the operator
cannot be directly accomodated on the Euclidean latticdy ®all parts of the matrix element
under consideration can be evolved in time to a single insta@s rotation between Euclidean and
Minkowski space become trivial. Consequently, latticeleation of the matrix element (2.2) re-
quires generically space-likeandv, since only then is there no obstacle to boosting the problem
to a Lorentz frame in which andv are purely spatial, and calculatntilfg{msubtr in that frame. The
results extracted for the invariant amphtud@ag are then immediately valid also in the original
frame in which (2.2) was initially defined, thus completiig determination of the shift (2.8).

Since, in a numerical lattice calculation, the staple extpmecessarily remains finite, two
extrapolations must be performed from the generated dataely, — o, as well as the extrapo-
lation of the staple direction toward the light corzfe,—» 0. |n a previous investigation of nucleon
TMDs [9], the former extrapolation was seen to be under obfdr a range of parameters, whereas
the latter presented a formidable challenge. The maindtioit in this respect is the set of hadron
momentaP accessible with sufficient statistical accuracy. One ofrtt@n motivations for the
present pion study was to achieve progress with respecettatgef limit. The pion, by virtue
of its lower mass compared to the nucleon (note that the hachass enters the denominator of
2), allows one to access highér also, being spinless, it allows one to obtain better diegigor
the TMD matrix element (2.2) by averaging over spatial iotet of the operator under considera-
tion. The calculations presented in the following were perfed using a MILC 2+1-flavor gauge
ensemble [10] on Z0x 64 lattices with a spacmg ad = 0.12fm, corresponding to pion mass
my;=518MeV. The Iargesef value reached |§ 2.03. Disconnected contributions to the matrix
elements (2.2) were not evaluated.

Fig. 2 shows a typical result for the generalized Boer-Mrddshift (2.8) foru-quarks at given
|br| andf as a function of the staple extent, comparing the result for aneson with the case of
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Figure 2: Generalized Boer-Mulders shift as a function of staplerfier u-quarks in a proton (left) and a
" meson (right). Data are obtained in the samg= 518 MeV, gauge ensemble at identitai| andm,{.

00— L L A e p 00 —————

[ maAup/ Agp (GeV up-quarks 1 up-quarks
i 15/ Aap (GeV) my = 518 MeV" |br| = 0.36 fm

-0 £ T O = 518 MeV b
i $ ig o3 i i: t 1

—02f % E ﬁ & }' L é ii - o2f . é ? :
: e * y ]

-03F ° - -03f 1
[ o . i H
[ ¢=0 ]

-o4r .° (=101 e P~ (1,0,0) 1

. (=203 myAyp/Asp (GeV) P~ (1,1,0)

_0‘5 L L o L L L L L L L L L L L L L L L L L L 70 5 L L L L L L L L L L L L L L L L L L L L L L L L L

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.5 1.0 1.5 2.0 25
[bp| (fm) ¢

Figure 3: Generalized Boer-Mulders shift in tie— oo SIDIS limit as a function ofbr | (left) andf (right).

In the left panel, the data in the region belflwy | ~ 0.25fm may be significantly affected by finite lattice
cutoff effects. In the right panel, the congruence of thadddtained folP in different directions exhibits
the good rotational properties of the calculation.

a proton studied previously in [9]. The T-odd behavior oftbbservable is evident, witfp — o
corresponding to the SIDIS limit, wheregs— —o yields the DY limit. The data level off to
approach clearly identifiable, stable plateaux as the estigpigth grows. Note that the two sets
of data correspond to identical hadron momenla,nand the correspondm@ values differ only
because of the hadron mass in the denomlnata,’r afe., th is the same in the two cases. In
this particular juxtaposition, the Boer-Mulders shifte guantitatively very close to one another,
in accordance with a suggestion put forward in [11]. Noteyéwer, that this observation is special
to u-quarks; thed-quark Boer-Mulders shift in the proton is significantlystger than the-quark
shift, whereas the-quark anobl_-quark shifts in thet" are, of course, identical.

Fig. 3 focuses on the data in the SIDIS limit. The left pan@\mnhe dependence qimr\ for
three different values of the Collins- Soper evolution maeBerZ the dependence flattenséus in-
creased. The right panel exhibits thejependence at a representafiygl. A considerably smaller
statistical uncertainty is achieved compared to the nuctsse studied previously [9], affording
a first glimpse of asymptotic behavior fh The data suggest a rather early onset of the Iérge-
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regime, which, if substantiated further in calculationsselr to the physical point, would be very
favorable for the extraction of TMD information relevant xperiment from lattice calculations.

4. Summary

The present study focused on the Boer-Mulders shift in a,pigtl a particular emphasis on
obtaining information concerning the behavior of this tydelf MD observable for large Collins-
Soper parametaf. The Boer-Mulders shift is determined from pion matrix edgrs of a quark
bilocal operator containing a staple-shaped gauge linklvberves to incorporate final/initial state
effects (for SIDIS/DY); the connection between the Loreingane preferred for the lattice calcu-
lation (in which the staple is defined at a single Euclideare}iand the Lorentz frame preferred
for the phenomenological definition of TMDs (in which thep&adirection approaches the light
cone from the space-like side, as parametrizeﬁh’y achieved by extracting invariant amplitudes
from the data. The results for the Boer-Mulders shift suggasarly onset of asymptotic behavior
as a function of; conclusions about the light-cone limit thus appear to biiwireach of lattice
calculations. Furthermore, the Boer-Mulders shiftdiegquarks in protons, investigated previously
in [9], and 1" mesons was observed to be quantitatively similar.
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