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Introduction

Lattice QCD calculations are an essential tool to study the inner structure of nucleons. Mo-
ments of parton distribution functions and form factors or, more recently, generalized form factors
have always been popular targets in this regard. These observables provide important information
on the distribution of momentum, spin and charge within a nucleon and are accessible on the lattice
via expectation values of local operators, Oµ1µ2,.... For example,

〈N(P′)|Oµν

V |N(P)〉=U(P′)
{

γ
{µPν}A20(t)−

iσρ{µ∆ρPν}

2mN
B20(t)+

∆{µ∆ν}

mN
C2(t)

}
U(P) (1)

gives access to the twist-2 generalized form factors A20, B20 and C2 and also to the second (Mellin)
moment of the nucleon’s parton distribution 〈x〉= A20(0) (see, e.g., [1] for a comprehensive list).

Besides structure functions, sigma terms, σq =mq〈N|q̄q|N〉 for the quark q= {u,d,s}, are also
of interest. They parametrize the (small) contribution of quarks to the nucleon mass and are needed,
e.g., for precision measurements of SM parameters or dark-matter searches. Experimentally, sigma
terms are only indirectly accessible but lattice QCD provides a way to calculate them. In particular,
the sigma term of the strange quark, σs, or the so-called pion-nucleon sigma term σπN = σu +σd

of the (approximate mass-degenerate) light quarks have been addressed on the lattice in the past
[2–4]. Until recently it was however numerically too expensive to perform these calculations in the
vicinity of the physical point or to directly evaluate σπN . Therefore, most lattice values of σπN are
from indirect determinations, for example, from chiral extrapolations of lattice data for the nucleon
mass (via the Feynman-Hellmann theorem) [5, 6]. Often these extrapolations are performed up to
relatively large pion masses mπ , which limits the precision of the final (physical) value.

Lattice determinations of structure functions suffer similar limitations, in addition to the prob-
lem of excited-state contributions which become more severe the closer one gets to the physical
point. With the advance of new lattice techniques and ever more powerful computers the situation
has, however, improved. Now lattice QCD calculations start to approach the physical point and
excited-state contaminations can be removed more efficiently [7]. Here we will present new data
for the generalized form factors and σπN , including an estimate almost at the physical point.

Lattice setup

Our lattice calculations are performed on configurations generated by the Regensburg group
and QCDSF of N f = 2 nonperturbatively-improved Wilson fermions and the standard Wilson gauge
action with β = 5.29 and 5.40. The lattice spacings are 0.07 and 0.06 fm, respectively and our pion
mass values range from 491 MeV down to 150 MeV. Lattice sizes are chosen accordingly: Lmπ ≥
3.4 or higher (see Table 1 for details). For the translation of our lattice results into physical units
we assume r0 = 0.5fm [6] and use nonperturbative renormalization constants for the conversion of
the form factors to the MS scheme (renormalization scale µ = 2GeV) [8].

Our calculations feature an optimized source and sink smearing to reduce the impact of excited-
state contaminations. These sources and sinks are created using typically 300–400 steps of Wup-
pertal smearing and APE-smeared spatial links. Two or three sources are used per configuration,
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β κ lattice N×M a [fm] mπ [MeV] Lmπ tsink/a
5.29 0.13620 243×48 1124×2 0.07 430 3.7 15

0.13632 323×64 2027×2 294 3.4 15
0.13632 403×64 2028×2 289 4.2 15
0.13640 643×64 940×3 150 3.5 15

5.40 0.13640 323×64 1170×2 0.06 491 4.8 17
0.13660 483×64 2178×2 260 3.8 17

Table 1: Simulation parameters. N is the number of configurations and M of sources per configuration.

depending on the ensemble parameters (see Table 1). The first source is placed at a random site,
the remaining one (or two) such that the distance between them is maximized.

The generalized form factors (GFFs) are extracted from fits to ratios

R(tsink,τ, p′, p) =
CO

3pt(tsink,τ,~p′,~p)

C2pt(tsink,~p′)

√
C2pt(tsink− τ,~p)C2pt(τ,~p′)C2pt(tsink,~p′)
C2pt(tsink− τ,~p′)C2pt(τ,~p)C2pt(tsink,~p)

(2)

of nucleon two and three-point functions, C2pt(t,~p) and CO
3pt(tsink,τ,~p′,~p). For the calculation of

the latter we use the standard sequential-source technique with a current inserted at 0� τ � tsink

(see [9] for our calculation using stochastic noise). tsink denotes the source-sink separation. We
find that tsink = 15 and tsink = 17 (in lattice units) are sufficient for our calculations at β = 5.29 and
β = 5.40, respectively. For tests using different tsink values see [7]. We restrict ourselves to the
isovector case, but disconnected contributions are in progress.

For the scalar forward matrix element we have already preliminary data, including discon-
nected contributions. We extend our former analysis of σπN [3] to a range of pion mass values.
The scalar matrix elements 〈N|q̄q|N〉, from which we obtain estimates for σπN , are extracted from
ratios of three- and two-point functions at zero lattice momentum and with a stochastic estimator
for the disconnected contributions.

Results for Generalized Form Factors

We start the discussion of results with the GFFs, namely the second (Mellin) moments of
the vector and axial-vector nucleon GPDs.1 The relevant form factors are A20, B20 and C2 for
the vector GPDs, and Ã20 and B̃20 for the axial-vector GPDs. Preliminary data for A20, B20 and
C2 were already shown in [10]. Here we provide an update for these (obtained with our improved
sink-source smearing) and also present results from a new gauge ensemble at almost physical quark
mass (mπ ≈ 150MeV).

A comparison of new and old points is shown in Fig. 1 (left) for the example of AMS
20,u−d . Our

new points lie systematically below the old points and this difference is almost independent of the
momentum transfer Q2, and roughly of the same magnitude as we see for 〈x〉u−d = AMS

20,u−d(0) (see
[7]). Since all data sets originate from the same gauge ensembles (mπ ≈ 289MeV), but a different

1Results for the first and third moments will be published elsewhere. Pion structure function results from the same
gauge ensembles can be found in [11].
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Figure 1: AMS
20,u−d versus−Q2. Left: comparison of two types of source smearing for fixed lattice parameters

(β = 5.29, κ = 0.13632). Black squares are for Jacobi smearing (old data from [10]), blue circles for the
improved smearing. Right: Q2-dependence for three pion masses: mπ = 151 (red squares), 289 (blue
circles) and 429 MeV (green diamonds). The points are all for the improved smearing and β = 5.29.
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Figure 2: As Fig. 1 (right) but for BMS
20,u−d (top left), CMS

2,u−d (top right), ÃMS
20,u−d (bottom left) and B̃MS

20,u−d
(bottom right). Note that all data are still preliminary.
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type of sink-source smearing was used, we believe our improved smearing is the main reason for
the down-shift of our new points, as has been discussed in detail in [7].

Deviations are also seen for B20,u−d , but here these deviations decreases with |Q2| → 0. In
fact, the slopes of the new and old points differ, but towards Q2 = 0 the points tend to the same
values. For C20,u−d we practically see no difference between old and new points.

Looking at the mπ -dependence, we see this dependence is now more pronounced than for the
old data. For example, for A20,u−d(Q2) we see that points for Q2 < 0 differ for different pion
masses, while in [10] we saw this difference to decrease with Q2→ 0 (cf. Fig. 2 of [10] to Fig. 1
(right)). Also for B20,u−d and Ã20 we observe a vertical separation of points for different pion
masses that does not disappear as Q2→ 0.

When the full statistics is reached we should be able to provide precise data for the low-Q2

dependence of the GFFs. We will also perform combined fits of these five form factors to new
(full) 1-loop expressions from Baryon Chiral perturbation theory [12]. As mentioned, calculations
including disconnected contributions are in progress.

Results for the Nucleon Sigma term

For the scalar matrix element we already have some preliminary results which include contri-
butions from disconnected diagrams. This allows us to update our former data on σπN . Our new
σπN data are shown in Fig. 3 for pion masses between 150MeV and 491MeV. There we also show
our previous estimate at mπ ≈ 290MeV [3] and the N f = 2+1+1 point from the ETM collaboration
at mπ ≈ 390MeV [4]. Both agree within errors with our new (N f = 2) points.

As mentioned above, at the physical point one knows σ
phys
πN only indirectly, for example from

chiral extrapolations of lattice data for the nucleon mass. Recent values for σ
phys
πN from such studies

range between 32 and 52 MeV [5, 6]. Our new direct (but still preliminary) data point at mπ ≈
150MeV (a≈ 0.07fm) lies in the lower half of that range (see Fig. 3).

With these new points for σπN we can also refine our scale setting of r0 for which in [6] we
used nucleon mass data for a range of pion mass values below 500 MeV and the sigma-term at mπ ≈
290MeV and fitted them simultaneously to the chiral expressions for σπN(m2

π) and MN(m2
π). Since

σπN(m2
π) is related to the slope of MN , this particular combination helps to reduce the uncertainties

of the chiral fits and hence of the scale setting. In [6] we had σπN only for a single mπ , but now we
have both σπN(m2

π) and MN(m2
π) for all mπ .

An example for such a simultaneous fit (which also includes volume corrections) is shown
in Fig. 4. There, the (blue) slopes are given through the σπN(m2

π) data and the (red) squares are
the finite-volume corrected data points for the nucleon mass. This fit is still preliminary and only
shown for a particular pion mass range, but it demonstrates the potential of our approach.

Note also the physical point marked by a (green) full circle in Fig. 4. For this we use our
estimate for r0 from [6], which is clearly supported by our new data. The fit was not forced to go
through the physical point.

Conclusions

We have reported on our reanalysis of the nucleon generalized form factors (GFFs) on N f = 2
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Figure 3: The N f = 2 pion-nucleon sigma term versus m2
π . The ETMC point is from [4] and the QCDSF

point from [3]. The right y-axis and top x-axis give the corresponding physical numbers.
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Figure 4: Combined fit to the (volume-corrected) nucleon mass data (red squares) and sigma term data (blue
slopes), similar to what we did in [6]. The physical point is marked by a green circle assuming r0 = 0.501fm
[6]. The fit was not “constrained” to go through the physical point.
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gauge field ensembles and added a new ensemble with mπ ≈ 150MeV. Our calculations feature
an optimized source and sink smearing for which we find excited-state contaminations are much
reduced (see also [7]). A comparison of our new and old data for the GFFs shows a better removal
of excited state contributions that changes the Q2 dependence. In particular the mπ -dependence is
much more pronounced.

Along with this re-calculation of the GFFs, we have also extended our calculation of σπN . We
have provided here new N f = 2 data for σπN(mπ) for pion masses from mπ ≈ 491MeV down to
mπ ≈ 150MeV, which will allow us to give an improved estimate of σ

phys
πN in the near future.

The presented results should be considered as still preliminary. A complete analysis will
follow as soon as the full statistics has been reached for all gauge ensembles.

Numerical calculations have been performed on the SuperMUC system at the LRZ/Germany and the
FERMI BG/Q machine at CINECA/Italy. We acknowledge PRACE (project 2011050791) for awarding us
access to the FERMI BG/Q machine. We have made use of the Chroma software suite [13] adapted for
our needs. For the generation of gauge field configurations we used QPACE and the BQCD software [14]
including an improved inverter [15]. This work has been supported in part by the DFG (SFB/TR 55, Hadron
Physics from Lattice QCD) and the EU under grant 238353 (ITN STRONGnet). A.St acknowledges support
by the European Reintegration Grant (FP7-PEOPLE-2009-RG, No.256594).
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