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We use a lattice determination of the hadronic vacuum polarization tensor to study the associated
Ward identities and compute the Adler function. The vacuum polarization tensor is computed
from a combination of point-split and local vector currents, using two flavours of O(a)-improved
Wilson fermions. Partially twisted boundary conditions are employed to obtain a fine momentum
resolution. The modifications of the Ward identities by lattice artifacts and by the use of twisted
boundary conditions are monitored. We determine the Adler function from the derivative of
the vacuum polarization function over a large region of momentum transfer q2. As a first ac-
count of systematic effects, a continuum limit scaling analysis is performed in the large q2 regime.
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1. Introduction

Recently, there has been a lot of interest in lattice determinations of the hadronic vacuum
polarization and related quantities, such as the Adler function. The latter can be used to determine
the running of αQED [1,2], which is a limiting factor for phenomenological studies at a future linear
collider. The Adler function is related to the vacuum polarization function Π(q2) by

D(q2) =−3πq2

α

d
dq2 ∆α

had
QED(q

2) = 12π
2q2 d

dq2 Π(q2), (1.1)

where ∆αhad
QED(q

2) is the shift of the fine structure constant due to hadronic contributions. The
vacuum polarization is being extensively studied by means of lattice simulations. The present
study reports on a continuation of the project in [3].
In the continuum the Ward identity for the vacuum polarization tensor is given by

∑
µ

qµΠµν(q2) = ∑
ν

qνΠµν(q2) = 0. (1.2)

On the lattice, these relations are not necessarily satisfied, for instance, due to the use of a local
non-conserved current and boundary conditions. In this work we investigate the modifications of
the Ward identity due to the use of twisted boundary conditions. The structure of this work is as
follows: in section 2 we define the basic quantities used in our study. We discuss the procedures
developed to determine the Adler function in section 3. We present our results for the Ward identi-
ties in section 4. In section 5 we draw conclusions and give an outlook for the future course of this
project.

2. The vacuum polarization

In our study we use two dynamical flavours of O(a) improved Wilson fermions and the Wilson
plaquette action. The calculations are performed on gauge configurations generated by the CLS
initiative [4]. The ensembles considered in this paper are listed in table 1.

Label V β a[fm] mπ [MeV] mπL Nc f g

A5 64×323 5.20 0.079 312 4.0 250
E5 64×323 5.30 0.063 451 4.7 168
F6 96×483 5.30 0.063 324 5.0 217
N6 96×483 5.50 0.050 340 4.0 173

Table 1: List of simulation parameters of the CLS ensembles considered in this work. The configurations
were generated with N f = 2, O(a)-improved Wilson fermions. The lattice spacing is taken from [5].

The hadronic vacuum polarization tensor is defined as

Π
N f
µν(q

2) =
∫

d4xeiqx
〈

JN f
µ (x)JN f

ν (0)
〉
=
(
gµνq2−qµqν

)
Π(q2), (2.1)
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with the vector currents JN f
µ (x) = ∑

N f
f=1 Q f ψ̄ f (x)γµψ f (x), where Q f is the electric charge of each

flavour. In the continuum, Π(q2) is related to the vacuum polarization tensor via eq. (2.1), which
follows from Euclidean invariance and current conservation. When eq. (2.1) is evaluated on the
lattice both connected and disconnected diagrams occur. Despite the fact that the latter are esti-
mated [6,7] to be of the order of−10%, we currently neglect these contributions. Following [3] we
impose twisted boundary conditions [8,9,10] on the quark fields

ψ(xi +L) = eiΘiψ(xi) ⇒ q̂µ =
2
a

sin
(

πnµ

Lµ/a
−

Θµ

2Lµ/a

)
, (2.2)

where the twist is only introduced in one direction Θ = (0,Θ1,0,0), to tune the momenta. The
main benefit of this is the improved constraint on fits in the small momentum region between the
first and second Fourier momentum. In the simulations, the twist can be interpreted as a constant
background field on the gauge field, UΘ

µ (x) = Uµ(x)eiaBµ , where Bµ is a matrix in flavour space

depending on the twist angles. In the case of N f = 2 we have ψT (x) =
(
q(1),q(2)

)T
, thus for our

choice of twist angles we find Bµ=0,2,3 = 0, B1 = diag
(

B(1)
1 ,B(2)

1

)
with B( j)

1 = Θ
( j)
1 /L.

In the lattice regularization there is a certain freedom for the implementation of these currents. We
use a combination of local and point-split currents

J(l), fµ (x) = Q f ψ̄ f (x)γµψ f (x), (2.3)

J(ps), f
µ (x) =

Q f

2
[
ψ̄ f (x+µ)U†

µ(x)e
−iaBµ (γµ +1)ψ f (x)+ ψ̄ f (x)Uµ(x)eiaBµ (γµ −1)ψ f (x+µ)

]
.

The vacuum polarization tensor thus reads in our setup

Π
(ps,l),N f
µν (q2) =

∫
d4xeiqx

〈
J(ps),N f

µ (x)J(l),N f
ν (0)

〉
. (2.4)

While the local current is not conserved, it allows us to reduce the number of inversions needed for
the determination of the vacuum polarization, with respect to the case where the point-split current
would be used at both source and sink.

3. The Adler function

To determine the Adler function from eq. (1.1) it is necessary to compute the derivative of
the vacuum polarization function. We have developed three different procedures to obtain the
derivative in order to check for systematic effects. For the first procedure, we start by fitting a
Padé-Ansatz to the vacuum polarization,

Π f it(q2) = c0 +q2
(

c1

q2 + c2
2
+

c3

q2 + c2
4

)
. (3.1)

For the other procedures, we profit from the fact that the use of twisted boundary conditions yields
a sufficient amount of data points to determine the derivative of Π(q2) numerically in small steps
of q2. To compute the derivative we use fits at different values of q2 separated by a certain step size
ε . At each value of q2 we use several fit intervals q2±ε , where ε ∈ [0.02,1.0]GeV2. In figure 1 the
result for the vacuum polarization on the N6 ensemble is shown. We stress that the fit window used
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Figure 1: Top left: Results for the vacuum polarization on the N6 ensemble. Top right: Comparison of
different procedures for the numerical derivative of Π(q2). Bottom: Results for numerical procedure II as an
example for the three ensembles N6, F6, and A5 with three different values of the lattice spacing, cf. table
1. To compare the results to a phenomenological model [6] we rescale q2→ q̃2 = q2(mphys

ρ /mlat
V )2, i. e. the

rho mass at the physical point divided by the vector meson mass measured individually on each ensemble.

in the small momentum region should be small enough to describe the curvature of Π(q2), but not
too small so as to avoid strong fluctuations due to the limited number of data points. For the large
momentum region we find that large fit intervals are more suitable to describe Π(q2), because as
q2 is increased fewer points are available for the fit, and the curvature is rather small. We use two
different procedures to decide which fit interval describes the numerical derivative best.
The first numerical procedure uses linear fits, Π

[l]
f it(q

2) = al +blq2. We look for a region in ε where
the coefficient bl is stable.
The second numerical procedure uses linear, Π

[l]
f it(x) = al +blx, and quadratic fits, Π

[q]
f it(x) = aq +

bqx+cqx2, where x = ln
(
q2
)
. The use of the variable x is motivated by the linear behaviour of Π(x)

in the interval of q2 ∈ [1,10]GeV2, and the second order term is used to choose the appropriate fit
window by constraining deviations from the linear behaviour. In the top right panel of figure 1
we compare the different procedures and find an overall good agreement among the methods. The
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Figure 2: Results for extrapolations to the continuum using linear fits in a and in a2 to numerical procedure
II at two different momentum transfers. For comparison the values determined by the other procedures for
the Adler function are shown as well.

panel on the bottom of figure 1 shows the result for the Adler function for three different lattice
spacings. Note that the ensembles considered in figure 1 are not at a fixed pion mass as needed to
properly identify the lattice spacing dependence. The comparison to the phenomenological curve
should be regarded as qualitative at this stage. In figure 2 the momentum transfer is rescaled
by q2 → q̃2 = q2(mphys

ρ /mlat
V )2 [11] and the continuum extrapolation illustrated at two different

momentum transfers, q̃2 = 1.0GeV2 and q̃2 = 3.5GeV2. As expected the signs of cut-off effects
increase with q2. We apply linear fits in a and in a2 to test the continuum limit scaling.

4. The Ward identity of the vacuum polarization

The introduction of twisted boundary conditions in the computation of the vacuum polarization
tensor requires the use of different twist angles, Θ(1) 6= Θ(2), in each of the two quark propagators
appearing in Πµν . This leads to a breaking of isospin symmetry which introduces modifications
to the Ward identities in eq. (1.2). The net effect of the twisted boundary conditions on the Ward
identity enters through the background field B( j)

µ = Θ
( j)
µ /L. It should thus vanish in the infinite

volume limit. We perform a dedicated study of the lattice Ward identity in order to monitor the
possible impact on our calculation of the vacuum polarization function. To this end we define the
quantity

W (ps)
ν (q2) =

〈∣∣∣∣∣∑
µ

qµΠ
(ps,l)
µν (q2)

∣∣∣∣∣
〉

q2

, (4.1)

where the absolute value of the sum is averaged over degenerate values of q2 to avoid compensating
effects. The results shown in figure 3 indicate that for vanishing twist angle the Ward identity of
the point-split current is fulfilled almost to machine precision. For non-vanishing twist angles we
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Figure 3: The determination of W0 in eq. (4.1) for E5 with L=2.0fm are shown as red triangles facing up,
while the black triangles facing down refer to results on F6 with L=3.0fm. Left: W0(q2) at vanishing twist
angle. Right: W0(q2) for the largest twist angle of Θ = 9π

10 that we use in simulations.

observe that the Ward identity in eq. (1.2) is modified. We confirm that this effect diminishes as
the volume is increased.

To quantify the possible impact of the violation of the Ward identity in the extraction of the
vacuum polarization function Π(q2), we consider the following dimensionless ratios

A(ps)
ν (q2) =

W (ps)
ν (q2)

qνq2 〈Π(q2)〉q2
, B(ps)

ν (q2) =
∑µ qµΠ

(ps,l)
µν

qνΠ
(ps,l)
νν

, (4.2)

where the latter is similar to what was used in [12]. Contrary to the case of A(ps)
ν (q2), we observe

that B(ps)
ν (q2) can lead to isolated peaks for some values of q2. This effect appears to be due to

rather small values of the denominator of B(ps)
ν (q2) in the case of ν = 1 direction, where the twist

is applied. We show the results for these ratios in figure 4, and find that for the current precision of
our calculations, the violation of the Ward identity induces a negligible effect on the determination
of the vacuum polarization function.

5. Conclusions and outlook

We presented three different methods to compute the Adler function from vacuum polariza-
tion data which agree within errors over a large range of momentum transfer. Furthermore we
performed a preliminary study of the continuum limit scaling in the large q2 regime. In the future
we plan to extract the hadronic contribution to the running of αQED, which requires an extrapola-
tion to the continuum limit and a proper analysis of the mπ -dependence.
We presented numerical results for the Ward identities at different lattice volumes at a single lattice
spacing that signal modifications of the usual Ward identities in the presence of twisted boundary
conditions. This effect diminishes as the volume is increased, and given the current precision of

6



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
3
0
4

Computing the Adler function from the vacuum polarization function Hanno Horch

-0.001

-0.0005

0

0.0005

0.001

0.0015

0.002

0.0025

0 2 4 6 8 10 12

〈∣∣∣B(ps)
0

∣∣∣〉
q2

q2[GeV2]

-4e-07

0

4e-07

8e-07

1.2e-06

1.6e-06

2e-06

0 2 4 6 8 10 12

A(ps)
0 (q2)

q2[GeV2]

Figure 4: Results for A(ps)
ν (q2) and B(ps)

ν (q2) for Θ = 9π

10 are shown in the plots on the left and right,
respectively. Black triangles facing up refer to results for E5, L=2.0fm, red triangles facing down to results
for F6, L=3.0fm.

our calculations of the vacuum polarization it is observed to be negligible.
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