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1. Introduction and simulation details

The precise knowledge of the quark masses and in general of the hadronic parameters plays a
fundamental role in testing the Standard Model (SM) and in the search for new physics.

In this contribution we present an accurate determination of the average up-down, strange
and charm quark masses using the gauge configurations produced by the European Twisted Mass
(ETM) Collaboration with four flavors of dynamical quarks (N f = 2+1+1), which include in the
sea, besides two light mass-degenerate quarks, also the strange and the charm quarks, with masses
close to their physical values [1, 2]. The simulations were carried out at three different values of the
inverse bare lattice coupling β which allow for a controlled extrapolation to the continuum limit.
For each ensemble we used a subset of well-separated trajectories to avoid autocorrelations. The
Iwasaki action [3] was adopted for the gauge links, while the sea fermions were simulated using the
Wilson Twisted Mass Action [4], which at maximal twist provides automatic O(a)-improvement
[5]. To avoid mixing in the strange and charm sectors we adopted a non-unitary setup in which
for each flavor valence quarks are simulated using the Osterwalder-Seiler action [6]. In order to
minimize discretization effects in the pseudoscalar (PS) meson masses the values of the Wilson
parameter r are always chosen so that the two valence quarks in a meson have opposite values of r.

At each lattice spacing different values of the light sea quark masses have been considered.
The light valence and sea quark masses are always degenerate. In the light, strange and charm
sectors the quark masses were simulated in the ranges 0.1 mphys

s . µl . 0.5 mphys
s , 0.7 mphys

s . µs .
1.2 mphys

s and 0.7 mphys
c . µc . 2.0 mphys

c , respectively.
We studied the dependence of the PS meson masses (and of the pion decay constant) on the

(renormalized) light quark mass fitting simultaneously the data at different lattice spacings and
volumes. The values of the lattice spacing obtained in our analysis are a= 0.0885(36), 0.0815(30),
0.0619(18) fm, and the lattice volume goes from ' 2 to ' 3 fm. The pion masses, extrapolated to
the continuum and infinite volume limits, range from ' 210 to ' 450MeV.

Within our analyses we used: i) the results for r0/a (r0 is the Sommer parameter [7]) obtained
extrapolating to the chiral limit the values computed in [1, 2], and ii) the quark mass renormaliz-
ation constant Zm = 1/ZP computed non-perturbatively in the RI-MOM scheme.

2. Pion analysis

We determined the value of the average up-down quark mass mud by studying the dependence
of the squared PS meson mass M2

`` on the (renormalized) light quark mass m` and on the lattice
spacing a. The pion decay constant fπ was used to set the scale.

In the case of twisted mass fermions at fixed lattice spacing and volume the ChPT predicts for
the quantities M2

`` and f`` the following behavior at the next-to-leading order (NLO)

M2
`` = 2B0m`

(
1+ξl logξl +P1ξl +P2 a2 +

4c2a2

(4π f0)2 logξl

)
·KFSE

M (2.1)

f`` = f0

(
1−2ξl logξl +P3ξl +P4 a2− 4c2a2

(4π f0)2 logξl

)
·KFSE

f , (2.2)

where ξl = 2B0m`/(4π f0)
2 with B0 and f0 being the LO low-energy constants (LECs). In Eqs. (2.1)-

(2.2) the terms proportional to a2 log(ξl) originate from the mass splitting between charged and
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Figure 1: Chiral and continuum extrapolations of r0M2
``/m` (left) and of r0 f`` (right) based on the NLO

ChPT fits given in Eqs. (2.1)-(2.2). Lattice data are corrected for FSE using the CWW approach [10].

neutral pions, which can be expressed in terms of the c2 parameter as (M2
π0 −M2

π±)LO = 4a2c2.
They represent an additional discretization effect stemming from the twisted-mass fermionic ac-
tion [8, 9]. The factors KFSE

M and KFSE
f represent the corrections for the finite size effects (FSE) to

M2
`` and f``, respectively, computed by Colangelo, Wenger and Wu (CWW) [10].

The chiral and continuum extrapolations of r0M2
``/m` and of r0 f`` are shown in Fig. 1. It can be

seen that the impact of discretization effects when we use r0 as the scaling variable is at the level of
' 10% for r0M2

``/m`. In order to keep the extrapolation to the continuum limit under better control
we performed an alternative analysis adopting a different choice for the scaling variable, namely
instead of r0 we considered the mass Ms′s′ of a fictitious PS meson composed by two strange-like
valence quarks with mass fixed at r0ms′ = 0.22. The mass Ms′s′ is affected by non-negligible cutoff
effects, similar to the ones of the K-meson without however any significant dependence on the light
quark mass. Thus, we performed the continuum extrapolation of the ratio M2

``/M2
s′s′ , which benefits

of a (partial) cancellation of discretization effects. The comparison between the analyses performed
in units of r0 and Ms′s′ shows that, when Ms′s′ is chosen as the scaling variable, the discretization
effects on M2

`` can be reduced from ' 10% down to ' 4.5%.
For the chiral extrapolation we adopted both the NLO ChPT predictions (2.1)-(2.2) and a

polynomial formula. The corresponding results are presented in Fig. 2. The various sources of
systematic uncertainties are estimated as follows. The difference of the results obtained using
either r0 or Ms′s′ as the scaling variable represent the systematic uncertainty on mud associated with
discretization effects. A systematic uncertainty related to the chiral extrapolation is obtained by
comparing the results of the NLO ChPT predictions with those of the polynomial ansatz. As for
FSE we compared the results obtained by applying the CWW corrections with the ones obtained
without correcting for FSE. Finally, the methods M1 and M2 (differing by O(a2) effects), used in
[11] to calculate the renormalization constant ZP in the RI-MOM scheme, allow us to estimate the
systematic uncertainty due to the mass renormalization constant.

Combining all sources of uncertainties we get the following estimate for the average up-down
quark mass in the MS scheme at a renormalization scale of 2GeV:

mud = 3.70(13)stat+ f it(6)Chiral(5)Disc.(5)ZP(4)FSE MeV = 3.70(17)MeV . (2.3)
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Figure 2: Comparison between NLO ChPT and polynomial fits for r0M2
``/m` as a function of m`.

Our determination for mud is the first one obtained with N f = 2+1+1. The recent lattice averages
provided by FLAG [12] are: mud = 3.6(2)MeV at N f = 2 and mud = 3.42(9)MeV at N f = 2+1.

3. Kaon analysis

The physical value of the strange quark mass ms has been determined by studying the squared
kaon mass M2

s` as a function of ms, m` and a2. The analysis followed a strategy similar to the pion
one, adopting for FSE the formulae provided by Colangelo, Durr and Haefeli (CDH) [13]. As a
first step, however, we performed an interpolation of the lattice kaon data at a fixed value of the
strange quark mass in order to arrive iteratively to the physical value ms. The latter is the one that
leads to the value of the kaon mass in pure QCD, i.e. the experimental one corrected for leading
strong and electromagnetic isospin breaking effects, namely M̂K = 494.2MeV [14, 12].

To determine the strange quark mass we used several quantities extracted from the pion sector,
namely the lattice spacing, the LECs B0 and f0, the Sommer parameter r0 and the result for the
average up-down quark mass mud . As in the case of the pion, systematic errors were estimated by
comparing the results obtained with different procedures.

For the chiral extrapolation we used either a quadratic polynomial formula or the SU(2) ChPT
prediction at NLO. The latter one reads as

M2
s` = P0(m`+ms)

[
1+P1m`+P3a2] ·KFSE

Ms`
. (3.1)

due to the absence of chiral logs at NLO. Therefore, the polynomial formula differs from Eq. (3.1)
only for a quadratic term in m` inside the square brackets.

As in the pion case, the difference between the results of the two chiral extrapolations is taken
as an estimate of the systematic uncertainty due to the chiral extrapolation, while the result for
ms obtained including the CDH FSE corrections is compared with the one evaluated without FSE
corrections to estimate the corresponding systematic error.

Following the same strategy adopted in the pion analyses the kaon masses simulated at dif-
ferent β values can be brought to a common scale either by using r0 or by constructing the ratios
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Figure 3: Chiral and continuum extrapolation of (r0Ms`)
2 (left) and (Ms`/Ms′s′)

2 (right) based on the NLO
ChPT fit given in Eq. (3.1). Lattice data have been corrected for FSE using the CDH approach [13].

M2
s`/M2

s′s′ , which are expected to suffer only marginally by discretization effects. In this case m` is
expressed in physical units by using the values of the lattice spacing found in the pion sector.

The dependencies of M2
s`r

2
0 and M2

s`/M2
s′s′ on the renormalized light quark mass at each values

of β as well as in the continuum limit are shown in Fig. 3 in the case of the SU(2) ChPT fit. Results
of the same quality are obtained adopting the polynomial fit in both r0 and Ms′s′ units. In the case
of the kaon mass the use of the hadronic scale Ms′s′ turns out to be an extremely efficient tool for an
almost total cancellation of discretization effects in M2

s`, namely from ' 10% to about 0.4% (see
Fig. 3). The comparison between the two analyses based on r0 or Ms′s′ as scaling variable allows
us to estimate the systematic error due to discretization effects.

Our final result for ms in the MS scheme at a renormalization scale of 2GeV is

ms = 99.2(3.4)stat+ f it(0.6)Chiral(1.1)Disc.(1.5)ZP(0.5)FSE MeV = 99.2(3.9)MeV . (3.2)

4. Ds analysis

The physical value of the charm quark mass mc has been extracted from the analysis of the Ds-
meson mass as a function of mc, ms, m` and a2. Again, as a first step we performed an interpolation
of lattice data on Mhs both at the physical strange quark mass (obtained from the kaon analysis) and
at a fixed value of the charm quark mass in order to reach iteratively the physical value mc, which
is the one leading to the experimental value Mexp

Ds
= 1.969GeV.

As in the cases of the pion and kaon analyses, the lattice data for Mhs are converted in units
of either r0 or the mass Mc′s′ of a fictitious PS meson, made with one valence strange-like and one
valence charm-like quarks with masses fixed at r0ms′ = 0.22 and r0mc′ = 2.4, respectively. By
construction such a reference mass Mc′s′ has discretization effects closer to the ones of Mhs.

The chiral and continuum extrapolations of r0Mhs and Mhs/Mc′s′ are shown in Fig. 4. The
systematic uncertainty associated with the chiral extrapolation has been investigated using either
a linear or a quadratic fit in m`. We have taken into account also the errors induced both by the
uncertainty on ms and by the different ZP determinations from the methods M1 and M2.
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Figure 4: Chiral and continuum extrapolations of r0Mhs (left) and Mhs/Mc′s′ (right) using a linear fit in m`.

After evolving the renormalization scale from 2GeV to mc using N3LO perturbation theory
with N f = 4, we obtained

mc(mc) = 1.350(44)stat+ f it+scale(3)Chiral(8)Disc.(19)Zp(5)msGeV = 1.350(49)GeV , (4.1)

where it can be seen that the largest uncertainty comes from the combination of the statistical error,
of the fitting uncertainty and of the error on the lattice spacing found in the pion analyses.

5. Determination of the ratios ms/mud and mc/ms

In order to calculate the ratios ms/mud and mc/ms one could simply use our previous results
and propagate the uncertainties. We considered however an alternative procedure in which various
sources of uncertainties are minimized and a more precise determination of the mass ratios (at the
percent level) can be obtained. For determining the ratio ms/mud we have constructed the quantity

R(ms,m`,a2)≡ m`

ms

2M2
s`−M2

``

M2
``

. (5.1)

After applying the FSE corrections to M2
`` and M2

s` described in the previous sections, the continuum
and chiral extrapolations of R provide its physical value Rphys = R(ms,mud ,0), in terms of which
the ratio ms/mud can be calculated as

ms

mud
=

(
2M2

K−M2
π

M2
π

)phys 1
Rphys , (5.2)

Our result is
ms

mud
= 26.64(30)stat+ f it(2)a+m`

(2)ZP(1)FSE = 26.64(30), (5.3)

where all the systematic errors were calculated as in the previous analyses. The subscript (a+m`)

indicates the systematic error induced by the uncertainties on both the lattice spacing and the light
quark mass. The uncertainty induced by the error on ms turned out to be negligible.

A similar strategy has been implemented for the ratio mc/ms using the quantity

R(mc,ms,m`,a2)≡ ms

mc

(Mcc−Mcs)(2Mcs−Mcc)

2M2
s`−M2

``

. (5.4)
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We got the preliminary result

mc

ms
= 11.65(9)stat+ f it(5)ms(6)mc = 11.65(12) , (5.5)

where the systematic error associated to the uncertainties on the lattice spacing and the light quark
mass has not yet been included.
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