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1. Introduction

The lattice regulator provides a unique framework to investigate non-perturbative properties
of non-Abelian gauge theories. However this formulation explicitly breaks Poincaré symmetries at
finite lattice spacing, and their restoration can be recovered only in the continuum limit.

As a consequence the naive discretization of the energy-momentum tensor on the lattice re-
quires renormalization [1]. The correct (or renormalized) energy-momentum tensor on the lattice
is obtained as a linear combination of all operators with dimension less or equal than four, whose
mixing with the naively-discretized operator is allowed by lattice symmetries:

(T̂µρ)R = ∑
i

ci

{
T̂ (i)

µρ −〈T̂
(i)

µρ 〉
}

, (1.1)

In this proceedings we will be interested only in the pure gauge theory. The list of the T̂ (i) operators
is reported in appendix A. The assumption that Poincaré symmetries are restored in the continuum
limit implies that it is possible to tune the coefficients ci in such a way that the Poincaré Ward
identities are satisfied up to terms that vanish in the continuum limit. In particular the translation
Ward identity (TWI) has to be recovered:

〈φ1(x1)R · · ·φk(xk)R

∫
∂V

dSµ(x)(T̂µρ)R(x)〉=− ∑
xi∈V

∂

∂xiρ
〈φ1(x1)R · · ·φk(xk)R〉+O(a2) , (1.2)

where (φi)R are renormalized (gauge-invariant) local operators, the integral
∫

∂V dSµ(x) is intended
to be replaced by some lattice discretization, and all operators appear in points separated from each
other by a non-zero distance in physical units. Also the boundary of the volume V needs to be
kept away from all points xi. If any two operators coalesce, extra divergences appear in the Ward
identity due to contact terms that have to be subtracted in order to obtain a finite continuum limit.
This is of course a technical complication that one wants to avoid as much as possible.

The goal of this proceedings is to discuss the possibility of using the Yang-Mills gradient flow
(or Wilson flow, on the lattice) [2 – 4] in order to avoid contact terms in the TWI, allowing to write
a local (i.e. not integrated) TWI which might be useful to determine the coefficients ci numerically.
We will also briefly discuss the dilatation Ward identity (DWI) and its relationship with the gradient
flow. For the derivation of the equations presented in this proceeding we refer the reader to [5].

Alternative strategies have been recently proposed to renormalize the energy-momentum ten-
sor on the lattice [6 – 10], based on the idea that a discrete subgroup of translations is preserved on
the lattice, and acts on the partition function by shifting the boundary conditions for all fields.

2. Gradient flow

The Yang-Mills gradient flow is defined by the set of equations:{
∂tBt,µ(x) = Dt,νGt,νµ(x)

B0,µ(x) = Aµ(x)
, (2.1)

where Gt,νµ and Dt,ν are respectively field strength and covariant derivative constructed with the
field Bt,µ , and t is an additional parameter with the dimensions of a [length]2 which we will refer
to as flow time.
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A lattice-discretized version of the flow eq. (2.1) can be written as well [2]. Given a gauge
configuration U(x,µ) as initial condition, the discretized flow equation produces a new gauge con-
figuration Vt(x,µ) for each value of the flow time t. The new configuration Vt(x,µ) can be used to
construct a new class of gauge-invariant operators. The remarkable feature of the gradient flow is
that gauge-invariant operators that are local functions of the field Vt(x,µ) at some fixed and positive
flow time t are finite in the continuum limit, i.e. do not require renormalization. It is worth to stress
that the parameter t has to be kept fixed in physical units as the continuum limit is approached.

3. Infinitesimal translations of probes at positive flow time

Local translations are generated by the differential operator δx,ρ acting on the fundamental
fields like:

δx,ρAµ(y) = Fρµ(x)δ (x− y) . (3.1)

Strictly speaking this operator is the sum of a canonical infinitesimal translation and a field-
dependent infinitesimal gauge transformation, and therefore it reduces to a canonical infinitesimal
translation when applied to any gauge-invariant operator.

In terms of the differential operator δx,ρ , the TWI can be written in the following schematic
form (in a regularization that preserves Poincaré symmetry, e.g. in dimensional regularization):

〈∂µTµρ(x) [ · · · ]〉=−〈δx,ρ [ · · · ]〉 . (3.2)

A possible naive discretization of the differential operator δx,ρ is given by:

δ̂x,ρUµ(y) = a−3F̂ρµ(x)Uµ(x)δx,y , (3.3)

where F̂µν is some discretization of the field strength (for example one can use the properly-
normalized clover plaquette). When applied to any renormalized local operator φ(x)R with di-
mension dφ , the differential operator δ̂x,ρ generates extra contact terms due to mixing of δ̂x,ρφ(x)R

with operators with dimension less or equal than dφ + 5, which need to be properly renormalized
before taking the continuum limit.

The analysis of the divergences simplifies drastically if we consider probe operators defined at
positive flow time. It can be shown [5] that, if φt(x) is a local function of the gauge field at positive
flow time t, then the operator δ̂x,ρφt(y) renormalizes multiplicatively:

[δ̂x,ρφt(y)]R = Zδ δ̂x,ρφt(y) , (3.4)

and the (finite) renormalization constant Zδ does not depend on the probe φt(y). This observation
allows us to write a discretized version of the local TWI (in the case of one probe):

〈∂µ [T̂µρ(x)]R φt(0)〉=−Zδ 〈δ̂x,ρφt(0)〉+O(a2) , (3.5)

that is finite in the continuum limit even for coinciding points x = 0. Notice that φt(0) is not a local
operator in terms of the fields at t = 0, therefore [δ̂x,ρφt(0)]R is not zero when x 6= 0. As the gradient
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flow is essentially a smoothing procedure with a Gaussian decaying kernel, [δ̂x,ρφt(0)]R vanishes
for large x as e−x2/(4t). Clearly one can use equation (3.5) for different probes, different space-time
points x, and different flow times t to determine the coefficients ci appearing in the definition of the
renormalized energy-momentum tensor up to an overall normalization.

This multiplicative normalization can be fixed by requiring that the operator Zδ δ̂x,ρ generates
an infinitesimal translation with the correct normalization:

Zδ

∫
d4x δ̂x,ρφt(y) = ∂ρφt(y)+O(a2) . (3.6)

This strategy would require the calculation of 3-point functions (two probes and an energy-momentum
tensor). Perhaps a better way to approach this problem is to look at the DWI.

4. Infinitesimal dilatations of probes at positive flow time

Some trivial algebraic manipulation of the local TWI (3.5) yields the local DWI:

〈∂µ [xρ T̂µρ(x)]R φt(0)〉c =−Zδ xρ〈δ̂x,ρφt(0)〉+ 〈φt(0) [T̂µµ(x)]R〉c +O(a2) . (4.1)

As the pure gauge theory has a mass gap, all terms in the previous equation are integrable over
space-time:

Zδ 〈
∫

d4x xρ δ̂x,ρφt(0)〉= 〈φt(0)
∫

d4x [T̂µµ(x)]R〉c +O(a2) , (4.2)

where no contact terms arise in the r.h.s. The operator Zδ

∫
d4x xρ δ̂x,ρ generates an infinitesimal di-

latation when acting on gauge-invariant operators. The flow equation is invariant under dilatations,
provided that the fields and the flow time are rescaled with their respective engineering dimensions
along with the space-time coordinates, which implies (for details, see [5]):

Zδ

∫
d4x xρ δ̂x,ρφt(y) =

{
2t

d
dt

+ yρ

∂

∂yρ

+dφ

}
φt(y)+O(a2) . (4.3)

Putting everything together one obtains the anomalous DWI for a single probe at positive flow time:(
2t

d
dt

+dφ

)
〈φt(0)〉= Zδ

∫
d4x xρ〈δ̂x,ρφt(0)〉= 〈φt(0)

∫
dDx [T̂µµ(x)]R〉c +O(a2) . (4.4)

This equation can be used to determine Zδ or, equivalently, the overall normalization of the coeffi-
cients ci. It is very interesting to notice that the derivative with respect to the time flow is essentially
equivalent to the insertion of the trace of the renormalized energy-momentum tensor.

5. Conclusions

In this proceedings we have outlined a possible strategy to renormalize the energy-momentum
tensor on the lattice, based on the use of Ward identities for probe observables defined along the
gradient flow. Contact terms that plague local Ward identities for translations and dilatations dis-
appear when probes at positive flow time are considered. Beside the standard renormalization of
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the energy-momentum tensor, only an extra finite multiplicative renormalization needs to be deter-
mined.

The main equations that we have analysed are:

〈∂µ [T̂µρ(x)]R φt(0)〉=−Zδ 〈δ̂x,ρφt(0)〉+O(a2) , (5.1)(
2t

d
dt

+dφ

)
〈φt(0)〉= Zδ

∫
d4x xρ〈δ̂x,ρφt(0)〉= 〈φt(0)

∫
dDx [T̂µµ(x)]R〉c +O(a2) , (5.2)

which in principle can be used to determine the three renormalization constants of the energy-
momentum tensor, and the multiplicative renormalization constant Zδ . Numerical simulations are
needed to verify that this is a viable method in practice; they are deferred to future investigations.

We also point out that the extension of this work to theories with fermions does not present
any additional challenge.
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A. Mixing operators

In the case of QCD the operators T̂ (i)
µρ have been classified and listed in [1]. For the pure gauge

theory three operators are required:

T̂ (1)
µρ =− 2

g2
0

{
tr F̂σ µ F̂σρ −

δµρ

4 ∑
στ

tr F̂στ F̂στ

}
, (A.1)

T̂ (2)
µρ = δµρ ∑

στ

tr F̂στ F̂στ , (A.2)

T̂ (3)
µρ = δµρ ∑

σ

tr F̂µσ F̂µσ , (A.3)

where F̂µν is some discretization of the field strength (for example one can use the properly-
normalized clover plaquette).

The energy-momentum tensor on the lattice mixes with the identity as well. However the iden-
tity drops trivially out of the Poincaré Ward identities, reflecting the fact that the energy-momentum
tensor is only defined up to a shift (T̂µρ)R → (T̂µρ)R +αδµρ . The subtraction in eq. (1.1) corre-
sponds to the choice 〈(T̂µρ)R〉= 0 (in decompactified flat space-time).
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