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1. Introduction

In a recent paper [1], focused on the study of 2+1 dimensionaNyW¥Wang-Mills theory
defined on a 2-d torus, we have analyzed the interplay between the frémé groupN and the
finite volume effects in the presence of a non-trivial magnetic flux. We pesgented perturbative
and numerical evidence of a kind of volume independence in the thefiegtesl in the combined
NI dependence of physical quantitiegeing the size of the 2-dimensional spatial manifold. Here,
we will generalize the perturbative results to the case of a four dimensetiap with the kind of
twisted boundary conditions relevant for Twisted Eguchi-Kawai (TEuction, as put forward
by two of the present authors [2, 3]. We will start by presenting the peative set-up for a Yang-
Mills theory with twisted boundary conditions, and the interplay between finiteweland finiteN
effects in this context. We will continue by discussing possible caveats tothme independence
conjecture, including the presence of tachyonic instabilities [4] and theaappce of symmetry
breaking in the TEK model for large valuesf5]. We will argue that the prescription to scale the
magnetic twist withN, put forward in Refs. [2, 3] to prevent the latter, also succeeds itz
the tachyonic behaviour. We will end by presenting some numerical res@tslidimensions that
provide a test on the realization of volume independence at a non-piverkevel.

2. Perturbative set-up

To set the stage, let us start with a brief and general introduction on tiveifation of the
SU(N) Yang-Mills theory with twisted boundary conditions. The notation amddikcussion will
follow the review [6]. We start with a manifold composed of a d-dimensionalstoof lengths
I, imes some non-compact extended directions. The latter will not be rel@ramir purposes
and will be neglected in the discussion below. Gauge fields on this base sa@sfy periodicity
conditions in the compact directions given by:

Au(X+1v8y) = Qu ()AL (X)Q] (X) +1Qu ()0, Q) (%), (2.1)
where the SUY) twist matricesQ,(x) are subject to the consistency conditions:

with Z,,, = exp{2min,, /N}, andny, € Zy. In what follows, we will focus on the case of constant

twist matricesQ, (x) = I',. They are known under the name of twist-eaters. For the so-called irre-

ducible twists, it can be shown that they are uniquely defined modulo glabgkgransformations

(similarity transformations) and multiplication by an elemenZgf [6]. We will be considering

here the case of even number of twisted compactified directoriswe chooseN = L%/2, with

L € Z, the twistny, = g,y kN/L, with £,y = O(v — ) —O(u — v) (whereO® is the step function),

is irreducible ifk andL are co-prime. In what follows we will focus on this specific twist choice.
The periodicity constraint:

Au(x+1y0) =TyA (0T (2.3)
can be resolved by introducing a basis of the spad¢ N matrices satisfying:

M (p©)rf, = &pi'F (p©) (2.4)
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The basis can be constructed in terms of the twist matrices as:

N 1 i4p©
F(pl9) = Ee‘“(" )rgo o (2.5)
with a(p'©) an arbitrary phase factor, and:
21
Pl = - ek, (2.6)
u

with s, integers defined modulo. In the case of irreducible twists, one can show that therdlare
linearly independent such matrices which, excluding the identity, provideia bf theSU(N) Lie
algebra. The phase factors(p(©)), can be chosen to satisfy the following commutation relations:

[F(p).F (@) =iF(p.g,—p—a) I (p+0q), (2.7)

2 /0
F(p,q,—p—0) = —\stm (g” puqv> , (2.8)

playing the role of the SU(N) structure constants in this particular basig, Her

with

L2l 0, . s
WXqu@? (29)

QIJV -
with &,v&ve = d0, and the angl@ = ZHE/L, wherek is an integer satisfyingE: 1 (modL).
We can now expand the gauge fields in this basis:

A = S AP (2.10
p

with momenta decomposed ag = pff) + p,(j:), the sum of a colour-momentum papﬁf), and a

spatial-momentum part quantized in the usual Wpﬁ? = 2rmy /1, with my, € Z. The prime
implies that the zero colour-momentum component is excluded from the sumledieg this
issue, the momentum is quantized as if the theory lived in an effective torussiwi’dsll‘iff =Ll,.
Note also that the Fourier coefficiens(p) are just complex numbers, so that all the effect of the
colour is translated into the momentum dependence of the group structstarsn

One can now easily generalize the Feynman rules derivedi$o2 in Ref. [1], to arrive to the
conclusion that all vertices in perturbation theory are proportional tcetief:

9 pa) = |2 (B
F(Pa—p-a)= /o sin(5 puay). (2.11)
eff

whereVes = [, 15" This peculiar momentum dependent Feynman rules relate the twisted theory
with a non-commutative Yang-Mills theory with non-commutativity param@ter[7]-[9].
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3. Volumeindependence

Let us now analyze the dependence of the results on the rank of the gemgpN and the
sizes of the toru$,. Recalling the definition 08, in Eq. (2.9) and the momentum quantization
rule, it is clear that all théN andl, dependence enters only through the combindt;ijﬁn: LIy,
and the angl@ = ZHIZ/L. This implies that the perturbative expansion, at figeand| e, depends
in an indistinguishable way oN and the torus size. We dub this phenomermolume reduction
or volume independencd finite N. A limiting case would be TEK reduction which applies to a
discretized version of the Yang-Mills theory in whith= a (the lattice spacing). As a matter of
fact, TEK models have been used as a regularized version of non-cotivegeuge theories with

non-commutativity parameter:

L2a2 . «
v = g X Ew 6, (3.1)

Beyond perturbation theory, there are, however, possible caveats voltime independence
conjecture. As mentioned previously, several authors realized thenmeof tachyonic insta-
bilities in certain non-commutative theories [4]. These extend to ordinaryidsewith twisted
boundary conditions and present a menace to the volume independer@niaet The problem
occurs at one loop in perturbation theory. In Ref. [1] we saw how tbélpm does not arise in
2+1 dimensions if one adopts the large N prescription given in Ref. [3% arjument extends to
4 dimensions as well, and goes as follows. The transverse part of thievprtex function has a
non-zero value at leading order, since twisted boundary conditions etardeeo-momentum glu-
ons. This contribution is proportional tp|? ~ 472/1;. At one loop, the self-energy contribution
is negative and proportional to

PuBv

|p|*
where g, = B,y py. Instability arises if the second term is larger than the first. This occurs for
large enough where the calculation is unreliable. However, since the first term goesrdo ze
aslef goes to infinity, one might wonder if instability could arise in that limit. The presionp
given in Ref. [3] amounts to taking tHgy — o limit with 6,,, given by Eq. (2.9) and keeping
6 fixed. Plugging this expression in Eq. (3.2), one sees that the negalivengrgy also goes to
zero adeg goes to infinity and the critical remains finite, and of orde#?. Thus, as supported by
our numerical results, no instability should arise for- 6. The previous evidence for instability
occurred when taking a different limit, in whidhwas decreasing to zero agl1

Additional complications could arise from the fact that it is impossible to strictbpléfixed

asN changes. This is so becaufés a rational number with coprime rational factdrandL.
Smoothness of physical quantities 81is thus required for volume independence to hold. Our re-
sults for the electric flux energies and the perturbative glueball speatr@sril dimensions exhibit
such a smooth dependence, but the issue is difficult to settle in generabtedriidras indeed been
discussed profusely in the context of non-commutative gauge theoriesutvitbnclusive results
(see e.g. [10], [11]). Finally, effects arising from non-perturbaptysics might not respect tH&f
dependence. There are indications that this is so for certain twist chinid&K models, where
reduction fails due to spontaneous symmetry breaking at Mrffg. It has been recently shown,
however, that symmetry breaking can be avoided if (in addition to kee®ingd.) the magnetic
flux is scaled with_, asL goes to infinity [2, 3].

(3.2)
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Most of these questions can only be addressed non-perturbativelyhdt follows we will
summarize the results of a numerical analysis for the case of 2+1 dimensjoii¢ analysis for
d = 4 is ongoing and will be presented elsewhere.

4. Non-perturbativeresultsin 2+1 dimensional SU(N) Yang-Millstheory

Our analysis will be focused on the study of the electric flux energfesextracted from
Polyakov loop correlators. It is easy to show that these operators@auwtric fluxe = —g; njE,
determined by the gluon colour momentyim= 2mri/(NI). In perturbation theory at one-loop, a
compact formula, exhibiting a smooéhdependence, has been derived in Ref. [1]:

&2 AP 1,8
2w xCn) -1
where ,
1 ©d . 1
60 = g f, (BON-T]& 1), 4.2

in terms of the Jacobi theta functiof;(z,it) = ¥,z exp{—trm? + 2minz} . We have introduced
the dimensionless parameter= NIA /4. Note that in 3 dimensions the coupling constant is
dimensionful. Thus, all energy scales can be expressed in uritard the resulting dimensionless
guantities should appear in perturbation theory as a power seiés@ombining this information
with volume independence, we conclude that the relevant scale paramgéeturbation theory is
preciselyx (for a similar statement involvindlIAgcp in 4-d see [12] and [10]).

In Ref. [1] we have presented evidence tkatcaling holds beyond perturbation theory for
choices of the twist that do not exhibit tachyonic instability. As an illustratioa, present in
the left plot of Fig. 1 an analysis of electric-flux states with minimal momenjium(2r7/NI,0).

We display thex dependence of the combinatiafs2/A2, for (N, k) = (7,2) and(17,5), corre-
sponding to very close values 8f We stress the striking similarity of the results despite the very
different values ofN. Other results, for varyindy andk, confirm this conclusion, giving support to
the conjecture of a universaidependence for fixe. The data show that the smalbehaviour
follows the perturbative formula, starting at the tree-level restft’/A2 = 0.25. At large torus
sizes, we expect a linear growth of the energy that can be cast in dHatmlso exhibitx-scaling:

/
where the string tension, for electric fl@& has been parametrized as = No’@(€/N). Higher
order string corrections to this formula can also be taken into account, ingltite contribution
of Kalb-RamondB-fields which play an important role in the twisted set-up [10]. Indeed, the
observation that th8-field contribution amounts precisely to the perturbative tree-level term in
Eqg. (4.1) has guided us in the search foxadependent parameterization that fits very well the data.
The reader is referred to Ref. [1] for further details and a full antofithe results. Incidentally, let
us mention that we have analyzed the dependence of the string tensioretecthie flux, finding a
clear preference for Sine scaling wiiiz) = sin(7z) / 1, over Casimir scaling witlp(z) = z(1—z).

Our results allow to analyze in detail the issue of tachyonic instabilities. Therglgrerturba-
tive argument presented in Sec. 3 can be refined using Eq. (4.1).esslgldiscussed, the one-loop
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Figure 1: We displayx?62/A2, as a function ok, for electric flux states with momenturp:= (271/NI,0)
(Left, Center), ang = (41/NI,0) (Right).

correction, being negative, could give rise to a tachyonic excitation. dduars above a critical
coupling: x:(&) = |i|?/(4G(8/N)). The quantityG(Z) diverges as A|Z| for small|Z. This would
seem to unavoidably drive to zero adN goes to infinity. However, given the relation= —&;ke;,
it suffices to scalé& ~ /N to pushx. into the non-perturbative domain. On the opposite side, if we
look at minimal momentunmi| = 1, the electric flux is given bgand the critical coupling occurs
atxc(&) = 412k /N = 27m16. Thus, keepind > 8. the perturbative instability is avoided.
One can still worry about the possible appearance of non-pertuebasiability. An argument
based on the effective string description has been used in Ref. [1]itatedhat this is avoided
if: |7 |&/(N — |g)/N? > 1/12. Still, a full proof should rely on numerical results. In our previous
work [1], we have performed simulations at several value$ aind k/N. All the results with
6 > 2m/7 andk/N > 2/17 showed no indication of instability. A representative sample is presented
in Fig. 1. In addition to the stable case already discussed, we display twe Tasvhichk/N
becomes small. They correspond to electric figx= 1, with k = k=1 (central plot) andk = 2,
k= (N—1)/2 (right plot). In the first case (withl = 17), as the energy squared decreases from
the perturbative tree-level value it touches, at some point, zero. Thialsithe appearance of an
instability. Of course, the energy does never become tachyonic andwehalbserve instead is a
region where the electric flux has a small mass, possibly reflecting a nowvaeuum expectation
value of the Polyakov loop. In the largeregime though, the linearly rising potential overcomes
this behaviour and restores the standadpendence. In the second case, we display two values of
k/N =2/7 and 217. They are still large enough to prevent the appearance of instabitityever,
we observe a strong decrease in the energy of electric flux with dewgdadN. Assuming this

trend continues, one expects an instability to set-in below a given value oétius
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5. Conclusions

We have given a unified description of the perturbative expansion @Y s¥ang-Mills theory
on an even dimensional torus traversed by Z(N) magnetic flux through@ane. We stress the
emergence of an effective size parameter combining spatial and grgupedeof freedom. Our
results, valid at finitéN, provide important information on large N reduced models and the twisted
volume reduction mechanism. In particular, they support the prescriptien gi Ref. [3] on how
the flux has to scale with the rank N. A few numerical results in 2+1 dimens@rbé energies
of electric flux sectors support the applicability of these ideas at the adnfpative level. A good
description is given of the evolution of these energies at all scales.
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