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We discuss the perturbative expansion of SU(N) Yang-Mills theories defined on a d-dimensional

torus of linear sizel with twisted boundary conditions, generalizing previous results in the litera-

ture. For a specific class of twist tensors depending on a single integer flux valuek, we show that

perturbative results to all orders depend on the combination lN2/d and a flux-dependent anglẽθ .

This implies a new kind of volume independence that holds at finite N and for fixed values of̃θ .

Our results also provide interesting information about thepossible occurrence of tachyonic insta-

bilities at one-loop order. We support the prescription that instabilities are avoided, if the large

N limit is taken keepingθ̃ > θ̃c, and appropriately scaling the magnetic fluxk with N. Numeri-

cal results in 2+1 dimensions provide a test of how these ideas extend into the non-perturbative

regime.
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1. Introduction

In a recent paper [1], focused on the study of 2+1 dimensional SU(N) Yang-Mills theory
defined on a 2-d torus, we have analyzed the interplay between the rank of the groupN and the
finite volume effects in the presence of a non-trivial magnetic flux. We havepresented perturbative
and numerical evidence of a kind of volume independence in the theory, reflected in the combined
Nl dependence of physical quantities,l being the size of the 2-dimensional spatial manifold. Here,
we will generalize the perturbative results to the case of a four dimensionalset-up with the kind of
twisted boundary conditions relevant for Twisted Eguchi-Kawai (TEK) reduction, as put forward
by two of the present authors [2, 3]. We will start by presenting the perturbative set-up for a Yang-
Mills theory with twisted boundary conditions, and the interplay between finite volume and finiteN
effects in this context. We will continue by discussing possible caveats to the volume independence
conjecture, including the presence of tachyonic instabilities [4] and the appearance of symmetry
breaking in the TEK model for large values ofN [5]. We will argue that the prescription to scale the
magnetic twist withN, put forward in Refs. [2, 3] to prevent the latter, also succeeds in avoiding
the tachyonic behaviour. We will end by presenting some numerical results in2+1 dimensions that
provide a test on the realization of volume independence at a non-perturbative level.

2. Perturbative set-up

To set the stage, let us start with a brief and general introduction on the formulation of the
SU(N) Yang-Mills theory with twisted boundary conditions. The notation and the discussion will
follow the review [6]. We start with a manifold composed of a d-dimensional torus, of lengths
lµ , times some non-compact extended directions. The latter will not be relevantfor our purposes
and will be neglected in the discussion below. Gauge fields on this base space satisfy periodicity
conditions in the compact directions given by:

Aµ(x+ lν êν) = Ων(x)Aµ(x)Ω†
ν(x)+ iΩν(x)∂µΩ†

ν(x) , (2.1)

where the SU(N) twist matricesΩµ(x) are subject to the consistency conditions:

Ωµ(x+ lν êν)Ων(x) = ZµνΩν(x+ lµ êµ)Ωµ(x) , (2.2)

with Zµν = exp{2π inµν/N}, andnµν ∈ ZZN. In what follows, we will focus on the case of constant
twist matricesΩµ(x) = Γµ . They are known under the name of twist-eaters. For the so-called irre-
ducible twists, it can be shown that they are uniquely defined modulo global gauge transformations
(similarity transformations) and multiplication by an element ofZZN [6]. We will be considering
here the case of even number of twisted compactified directionsd. If we chooseN = Ld/2, with
L ∈ ZZ, the twistnµν = εµν kN/L, with εµν = Θ(ν −µ)−Θ(µ −ν) (whereΘ is the step function),
is irreducible ifk andL are co-prime. In what follows we will focus on this specific twist choice.

The periodicity constraint:

Aµ(x+ lν ν̂) = ΓνAµ(x)Γ†
ν , (2.3)

can be resolved by introducing a basis of the space ofN×N matrices satisfying:

Γµ Γ̂(p(c))Γ†
µ = eil µ p(c)µ Γ̂(p(c)) . (2.4)
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The basis can be constructed in terms of the twist matrices as:

Γ̂(p(c)) =
1√
2N

eiα(p(c))Γs0
0 · · ·Γsd−1

d−1 (2.5)

with α(p(c)) an arbitrary phase factor, and:

p(c)µ =
2π
Llµ

εµνksν , (2.6)

with sν integers defined moduloL. In the case of irreducible twists, one can show that there areN2

linearly independent such matrices which, excluding the identity, provide a basis of theSU(N) Lie
algebra. The phase factors,α(p(c)), can be chosen to satisfy the following commutation relations:

[Γ̂(p), Γ̂(q)] = iF (p,q,−p−q)) Γ̂(p+q) , (2.7)

with

F(p,q,−p−q) =−
√

2
N

sin

(

θµν

2
pµqν

)

, (2.8)

playing the role of the SU(N) structure constants in this particular basis. Here,

θµν =
L2 lµ lν

4π2 × ε̃µν θ̃ , (2.9)

with ε̃µνενσ = δµσ , and the anglẽθ = 2π k̄/L, wherek̄ is an integer satisfyingkk̄= 1 (modL).

We can now expand the gauge fields in this basis:

Aν(x) =
1√
V

′
∑
p

eip·x Âν(p) Γ̂(p) , (2.10)

with momenta decomposed aspµ = p(s)µ + p(c)µ , the sum of a colour-momentum partp(c)µ , and a

spatial-momentum part quantized in the usual way:p(s)µ = 2πmµ/lµ , with mµ ∈ ZZ. The prime
implies that the zero colour-momentum component is excluded from the sum. Neglecting this
issue, the momentum is quantized as if the theory lived in an effective torus withsizesleff

µ = Llµ .
Note also that the Fourier coefficientsÂν(p) are just complex numbers, so that all the effect of the
colour is translated into the momentum dependence of the group structure constants.

One can now easily generalize the Feynman rules derived ford = 2 in Ref. [1], to arrive to the
conclusion that all vertices in perturbation theory are proportional to the factor:

g√
V

F(p,q,−p−q) =−
√

2λ
Veff

sin
(θµν

2
pµqν

)

, (2.11)

whereVeff ≡ ∏µ leff
µ . This peculiar momentum dependent Feynman rules relate the twisted theory

with a non-commutative Yang-Mills theory with non-commutativity parameterθµν [7]-[9].
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3. Volume independence

Let us now analyze the dependence of the results on the rank of the gauge groupN and the
sizes of the toruslµ . Recalling the definition ofθµν in Eq. (2.9) and the momentum quantization
rule, it is clear that all theN and lµ dependence enters only through the combinationleff

µ = Llµ ,
and the anglẽθ = 2π k̄/L. This implies that the perturbative expansion, at fixedθ̃ andleff, depends
in an indistinguishable way onN and the torus size. We dub this phenomenonvolume reduction
or volume independenceat finiteN. A limiting case would be TEK reduction which applies to a
discretized version of the Yang-Mills theory in whichlµ = a (the lattice spacing). As a matter of
fact, TEK models have been used as a regularized version of non-commutative gauge theories with
non-commutativity parameter:

θ TEK
µν =

L2a2

4π2 × ε̃µν θ̃ , (3.1)

Beyond perturbation theory, there are, however, possible caveats to the volume independence
conjecture. As mentioned previously, several authors realized the presence of tachyonic insta-
bilities in certain non-commutative theories [4]. These extend to ordinary theories with twisted
boundary conditions and present a menace to the volume independence mechanism. The problem
occurs at one loop in perturbation theory. In Ref. [1] we saw how the problem does not arise in
2+1 dimensions if one adopts the large N prescription given in Ref. [3]. The argument extends to
4 dimensions as well, and goes as follows. The transverse part of the 2-point vertex function has a
non-zero value at leading order, since twisted boundary conditions eliminate zero-momentum glu-
ons. This contribution is proportional to|p|2 ∼ 4π2/l2

eff. At one loop, the self-energy contribution
is negative and proportional to

λ
p̃µ p̃ν

|p̃|4 (3.2)

where p̃µ = θµν pν . Instability arises if the second term is larger than the first. This occurs for
large enoughλ where the calculation is unreliable. However, since the first term goes to zero
as leff goes to infinity, one might wonder if instability could arise in that limit. The prescription
given in Ref. [3] amounts to taking theleff −→ ∞ limit with θµν given by Eq. (2.9) and keeping
θ̃ fixed. Plugging this expression in Eq. (3.2), one sees that the negative self-energy also goes to
zero asleff goes to infinity and the criticalλ remains finite, and of order̃θ 2. Thus, as supported by
our numerical results, no instability should arise forθ̃ > θ̃c. The previous evidence for instability
occurred when taking a different limit, in which̃θ was decreasing to zero as 1/L.

Additional complications could arise from the fact that it is impossible to strictly keepθ̃ fixed
asN changes. This is so becauseθ̃ is a rational number with coprime rational factorsk̄ andL.
Smoothness of physical quantities onθ̃ is thus required for volume independence to hold. Our re-
sults for the electric flux energies and the perturbative glueball spectrumin 2+1 dimensions exhibit
such a smooth dependence, but the issue is difficult to settle in general termsand it has indeed been
discussed profusely in the context of non-commutative gauge theories without conclusive results
(see e.g. [10], [11]). Finally, effects arising from non-perturbative physics might not respect theleff

dependence. There are indications that this is so for certain twist choicesin TEK models, where
reduction fails due to spontaneous symmetry breaking at largeN [5]. It has been recently shown,
however, that symmetry breaking can be avoided if (in addition to keepingθ̃ > θ̃c) the magnetic
flux is scaled withL, asL goes to infinity [2, 3].
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Most of these questions can only be addressed non-perturbatively. In what follows we will
summarize the results of a numerical analysis for the case of 2+1 dimensions [1]. The analysis for
d = 4 is ongoing and will be presented elsewhere.

4. Non-perturbative results in 2+1 dimensional SU(N) Yang-Mills theory

Our analysis will be focused on the study of the electric flux energies,E , extracted from
Polyakov loop correlators. It is easy to show that these operators carry electric fluxei = −εi j n j k̄,
determined by the gluon colour momentum~p = 2π~n/(Nl). In perturbation theory at one-loop, a
compact formula, exhibiting a smooth̃θ dependence, has been derived in Ref. [1]:

E
2

λ 2 =
|~n|2
4x2 − 1

x
G
(~e

N

)

, (4.1)

where

G(z) =
1

16π2

∫ ∞

0

dt√
t

(

θ 2
3 (0, t)−

2

∏
i=1

θ3(z, it )−
1
t

)

, (4.2)

in terms of the Jacobi theta function:θ3(z, it ) = ∑n∈Z exp{−tπn2+2π inz} . We have introduced
the dimensionless parameterx = Nlλ/4π. Note that in 3 dimensions the coupling constant is
dimensionful. Thus, all energy scales can be expressed in units ofλ and the resulting dimensionless
quantities should appear in perturbation theory as a power series inλ l . Combining this information
with volume independence, we conclude that the relevant scale parameter inperturbation theory is
preciselyx (for a similar statement involvingNlΛQCD in 4-d see [12] and [10]).

In Ref. [1] we have presented evidence thatx-scaling holds beyond perturbation theory for
choices of the twist that do not exhibit tachyonic instability. As an illustration, we present in
the left plot of Fig. 1 an analysis of electric-flux states with minimal momentum~p= (2π/Nl,0).
We display thex dependence of the combinationx2

E
2/λ 2, for (N, k̄) = (7,2) and(17,5), corre-

sponding to very close values ofθ̃ . We stress the striking similarity of the results despite the very
different values ofN. Other results, for varyingN andk̄, confirm this conclusion, giving support to
the conjecture of a universalx-dependence for fixed̃θ . The data show that the small-x behaviour
follows the perturbative formula, starting at the tree-level resultx2

E
2/λ 2 = 0.25. At large torus

sizes, we expect a linear growth of the energy that can be cast in a formthat also exhibitsx-scaling:

E (~e/N)

λ
= 4πx

σ ′

λ 2 φ
(~e

N

)

, (4.3)

where the string tension, for electric flux~e, has been parametrized as:σ~e = Nσ ′φ(~e/N). Higher
order string corrections to this formula can also be taken into account, including the contribution
of Kalb-RamondB-fields which play an important role in the twisted set-up [10]. Indeed, the
observation that theB-field contribution amounts precisely to the perturbative tree-level term in
Eq. (4.1) has guided us in the search for anx-dependent parameterization that fits very well the data.
The reader is referred to Ref. [1] for further details and a full account of the results. Incidentally, let
us mention that we have analyzed the dependence of the string tension on theelectric flux, finding a
clear preference for Sine scaling withφ(z) = sin(πz)/π, over Casimir scaling withφ(z) = z(1−z).

Our results allow to analyze in detail the issue of tachyonic instabilities. The general perturba-
tive argument presented in Sec. 3 can be refined using Eq. (4.1). As already discussed, the one-loop

5
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Figure 1: We displayx2
E

2/λ 2, as a function ofx, for electric flux states with momentum:p= (2π/Nl,0)
(Left, Center), andp= (4π/Nl,0) (Right).

correction, being negative, could give rise to a tachyonic excitation. Thisoccurs above a critical
coupling: xc(~e) = |~n|2/(4G(~e/N)). The quantityG(~z) diverges as 1/|~z| for small |~z|. This would
seem to unavoidably drivexc to zero asN goes to infinity. However, given the relationni =−εi j kej ,
it suffices to scalek∼

√
N to pushxc into the non-perturbative domain. On the opposite side, if we

look at minimal momentum|~n|= 1, the electric flux is given bȳk and the critical coupling occurs
atxc(~e) = 4π2k̄/N ≡ 2πθ̃ . Thus, keeping̃θ > θ̃c the perturbative instability is avoided.

One can still worry about the possible appearance of non-perturbative instability. An argument
based on the effective string description has been used in Ref. [1] to indicate that this is avoided
if: |~n| |~e|(N−|~e|)/N2 > 1/12. Still, a full proof should rely on numerical results. In our previous
work [1], we have performed simulations at several values ofθ̃ and k/N. All the results with
θ̃ > 2π/7 andk/N> 2/17 showed no indication of instability. A representative sample is presented
in Fig. 1. In addition to the stable case already discussed, we display two cases in whichk/N
becomes small. They correspond to electric flux|~e| = 1, with k = k̄ = 1 (central plot) andk = 2,
k̄ = (N−1)/2 (right plot). In the first case (withN = 17), as the energy squared decreases from
the perturbative tree-level value it touches, at some point, zero. This signals the appearance of an
instability. Of course, the energy does never become tachyonic and whatwe observe instead is a
region where the electric flux has a small mass, possibly reflecting a non zero vacuum expectation
value of the Polyakov loop. In the largex regime though, the linearly rising potential overcomes
this behaviour and restores the standardx-dependence. In the second case, we display two values of
k/N = 2/7 and 2/17. They are still large enough to prevent the appearance of instability. However,
we observe a strong decrease in the energy of electric flux with decreasing k/N. Assuming this
trend continues, one expects an instability to set-in below a given value of thisratio.
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5. Conclusions

We have given a unified description of the perturbative expansion of SU(N) Yang-Mills theory
on an even dimensional torus traversed by Z(N) magnetic flux through each plane. We stress the
emergence of an effective size parameter combining spatial and group degrees of freedom. Our
results, valid at finiteN, provide important information on large N reduced models and the twisted
volume reduction mechanism. In particular, they support the prescription given in Ref. [3] on how
the flux has to scale with the rank N. A few numerical results in 2+1 dimensions for the energies
of electric flux sectors support the applicability of these ideas at the non-perturbative level. A good
description is given of the evolution of these energies at all scales.
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