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We formulate new two dimensional fermions breakighermiticity, based on the minimal dou-
bling fermion. We investigate their properties: (I) Symmes, (Il) eigenvalue distributions, and
(1) the number of poles. As a simple application of the fans, the Gross-Neveu model in two
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phase and the chiral broken phase diagram of the model withaginary chemical potential.
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1. Motivation

In lattice gauge theory, we often encounter situations yfaermiticity cannot be preserved,
e.g., finite density theory, supersymmetric theory, and so on. $sheemiticity is needed for real-
ity of Dirac determinant, most of the observables are complex numbers ingbelogshermiticity
broken theory, such as finite density theory, the partition function doesarmverge, so that
the analysis of high density region using lattice simulation breaks down evea ikethighting
method are employed. The serious problem is called the sign problem. Adtytionadd di-
mensions yshermiticity cannot be defined because we cannot define an irreducibli meaich
anti-commutes with all spatigtmatrices. For the reasons mentioned above, it is important to know
the effects ofghermiticity breaking. In this work, we consider some effectgsbermiticity break-
ing. To examine the effects, we firstly formulate two dimensional fermions witpgermiticity,
based on the minimal doubling fermion [1, 2], and then investigate some piesgpeirthe fermions.
We also apply the fermion to the Gross-Neveu model [3] and obtain parikgbrand chiral broken
phase diagrams.

2. Two dimensional non-yshermiticity fermion

Firstly, we define two dimensional fermions withgghermiticity (nonyshermiticity fermion),
based on the minimal doubling fermion which preserves exact chiral symfiegtj

DY (p) = D, 1 Sinpu- Y K(1=cospy) (2.1)
p=14

D(ZZ)(p) = Z i sinpy - yu + K(1—cosps) - y1, (2.2)
H=T4

Déz)(p) = Z i Sinpy - yu+K Z (1—cospy) - Yus (2.3)
u=14 u=14

Df)(p) = Z Psinpy-yut+k Y (L—cospy)-w, (2.4)
u=14 p,v=14 pz#v

Déz)(p) = Z i sSinpy - yu+K Z (1—cospy) - 1, (2.5)
p=14 u=14

where k is a hopping parameter which is a real number To investigate symmetries of the
fermions, we define discrete transformations as

C: D(pla p4) — 7CDT(7p17 7p4)c_l’
P : D(p1, pa) = VaD(—pa, pa) s, (2.6)
T : D(p1, pa) = YaD(p1, —pa) v,

whereC is a charge conjugation matrix. In two dimensions, we can ch@eséy; wherey; = g2
andy; = o. We also define chiral symmetry agghermiticity as,

chiral : D(p1, pa) = —yD(p1, Pa)ys,
yshermiticity : D(py, ps) = ysD'(p1, pa)ys,
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| |c[P| T][cP[CT|PT|CPT|chi|yh|
D(12) x| x| O|O| x| x O O | x
D(ZZ) x| x| OO x| x| O |O]| x
Déz) X | x| x| x X | X O O | x
Dgz) X | x| x| x X | X O O | x
D(SZ) x| x| OO ]| x | x O O | x

Table 1: Discrete symmetries, chiral symmetry agthermiticity for the Dirac operatorB(lzf&

where s is a chiral matrix defined ag = iy1ys. All the Dirac operators preserve exact chiral
symmetry and CPT symmetry but break C, P, CT, PT and cubic symmetries. dcdmsee that
D(lz), D(zz) and Déz) also preserve T and CP symmetries. We summarize symmetries for the Dirac
operators in the Table 1.

To understand more about the fermions, we examine the eigenvalue distribaitid the num-
ber of poles. The Fig.1 shows eigenvalue distribution of the fermions. Véglylsee that the
eigenvalues of th@(zz), Déz), Df) andD(Sz) spread over the RelmA plane entirely in the contin-
uum limit. On the other hand, in thb(lz) case, the eigenvalues localize along thd laxis in the
limit. Fig.2 represents the number of poles of the fermions at0.5,1 and 2. TheD(lz) atk =1
generatep = (0,0) and(0, 7). However, the other fermions have more than two or odd number of

poles .

Using appropriate regularization, such as small mass and anti-bourwatition, the Dirac
determinant OD(2225 can be evaluated. However, in the principle of lattice gauge theory, anglattic

fermion must return the continuum fermion in the continuum limit. Eﬁ@s return the continuum
classical action, but the eigenvalues of the Dirac operators do notaeitothe limit. Therefore,
the Dirac operators should be excluded from a candidate for lattice theory

3. Gross-Neveu model in two dimensions

We apply the nonghermiticity fermion to the two dimensional Gross-Neveu model. The
model can be solved exactly in lardfelimit using the saddle point approximation. In this limit,
the parity broken phase diagram, called Aoki phase[4], can be obtaMédalso focus on the
model with an imaginary chemical potential and the chiral symmetry brokere ghiagram [6]. In
this work, we apply only the Dirac operatmflz) defined in Eq.(3.4). At a first sight, the fermion
seems to be improper for a practical calculation because it does notvergsigermiticity. The
analyzes mentioned below are verification for application of the fermion to sicagles.

LIn this paper, the indices “1” and “4” denote temporal and spacial cowepts, respectively .
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Figure 1. The eigenvalue distribution of Dirac operators, Ip‘ﬁ) (b) D(22>, (c) DSP, (d) Df), and (e)D<52).
The horizontal and vertical axes denote the real part anarthginary part of eigenvalues, respectively. The
hopping parameter, the fermion mass and lattice size are ditve = 1, m= 0 andL? = 36 x 36. The blue
circle points denote eigenvalues for momepta (0,0), (0, 1), (77,0), and(T, 7).

We define the lattice action of the Gross-Neveu model as

— [ = . N o2
b= Y Fn| DY+ (M-+ 0+ This ) S| Y+ [;ﬂﬂ , (3.1)
n,m m L9 On
Nim — _[D(Z) i NS Lo —m2e L im —u?
ataux = » W | Dyt (On+ Toniys ) dum| Ym+ 5 > | — (00— M)"+ — (Tan — 1)°| |
nm 2 & L9G O
(3.2)

wherey is a chemical potential, aral, 77, andrg are an auxiliary scalar field, an auxiliary pseudo-
scalar, and an pseudo-vector field, respectively. The lower indickege actions denote a coor-
dinate in the lattice space. We omit the flavor indiagg) = ZiNzlll_/ilI/i- We can obtain original
actions including four-fermi couplings by integrating out the auxiliary fiedgst, and . These
actions preserve not onlyk1) symmetry but also chird 4 symmetry in the massless case. In the
(3.2) case, chirak4 symmetry is enhanced toay1) symmetry agZ = g.

Now, we choose two Dirac operators for the Gross-Neveu model witlitbout an imaginary
chemical potential as follows:

_ 1 K
D(lzzlm = 245 (5n+[1,m_ 5n—[1,m) “Yu+ > (25n,m - 5n+21,m_ 6n—3f,m> “Ya, (3.3)
p=T,

1 K
D(lzzlm = 245 (5n+[1,m - 5n—[1,m) “Yut > (Zaw,m —Oniim— 6n—i.,m> ‘W1, (3.4)
“: gl
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Figure 2: The poles of five Dirac operators, (Bf), (b) D<22>, (c) Dgz), (d) Df), and (e)Déz). The horizontal
and vertical axes denote momemptgandp;, respectively. The cross points, circle points, and tiliapgints
represent poles &= 0.5,1, and 2, respectively.

In the large N limit, we can derive the following gap equations for the critical éhAoki phase
using the saddle point approximation,

o [ d’k 20 1 od% 2
@ / (2m?2 o2 +H(k)’ 2 / (2m2 02+ H(K)’ (3.5)

where
H (k) = sirPla + sinks — ik (1 - coske) . (3.6)

M is a critical mass, andm, = mc.+ dp. And the lower index 0 denotes the solutions for the saddle
point approximation. In the similar way, gap equations for the chiral brpkese are obtained as,

[ dX Tuo— e [ d?k 2(mo+ Sinky)
AR I &
where
H(k) = [sinky — ik (1— cosky)]? + (sinks + Tuo)?, (3.8)

andy is a critical chemical potential. We also obtain the Aoki phase of the fermioingdldvored
mass [5] defined as

m — m+ms(p),

m; - cospicosps  for the naive fermion
mi(p) = { (3.9)

m; - COSPy for the non-yshermiticity fermion’
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Figure 3: The Aoki phase using the naive fermion (Red line) and the ybermiticity fermionIS(lz) (Blue
line) atg2 = g%/2. We fixed the hopping parameter of the nghermiticity fermion a = 1. The horizontal
and vertical axes denote the critical massand the squared four-fermi coupling constghtrespectively.
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Figure 4: The Aoki phase using the naive fermion (Red line) and the wbermiticity fermionﬁ(lz) (Blue
line) adding the flavored mass term at (Leff) = g% and (Right)gZ = g%/2. We fix the factor of flavored
mass and the hopping parameter of the pgirermiticity fermion atmys = 0.4 andk = 1, respectively. The
horizontal and vertical axes denote the critical massand the squared four-fermi coupling constgft
respectively.

where them; in the r.h.s is a constant.

The results are in Fig.3, Fig.4, and Figt5 We can see that the phase structures using the
non-shermiticity fermion are very similar to the naive fermion cases. All the coupimgtemts
are real numbers despite of using fermions withgbermiticity.

4. Summary and discussion

We formulated new two dimensional fermions withgghiermiticity (nonyshermiticity fermion),
based on the minimal doubling fermion, and investigated some properties d@rthifis. The
fermions preserve translation invariance, exact chiral symmetry anlitypbat break cubic sym-
metry and some discrete symmetries. The eigenvalu%zbfdefined in Eq.(2.1), distributes along

2In the phase diagrams using the fermions adding the flavored massigtfiest-order phase transition at the bottom
of the diagrams enclosed the critical line, so that the gap equations difigd.(3.5), are not applicable in this region.
However, we take leave not to correct to emphasize that we can obtafiose for the gap equations.
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Figure 5: The chiral broken phase diagrams using the naive fermiod (Re) and the nonghermiticity
fermion D(lz) (Blue line) at (Left)gZ = g2 and (Right)g2 = 2gZ. We fix the hopping parameter in the non-
yshermiticity fermion atk = 2. The horizontal and vertical axes denote the critical dbahpotential and
the squared four-fermi coupling constagt, respectively.

the imaginary axis in the continuum limit, but the others do not. In general, th@des either
have at least four poles, or else an odd number poIe@%batK > 1 generates two poles.

We also applied the fermioﬁ)(lz), to the two dimensional Gross-Neveu model with or without
imaginary chemical potential. In the application, the parity broken phaseatimaghich is called
Aoki phase and the chiral symmetry broken phase diagram were ohtdiheghase structures are
similar to the ones obtained with the naive fermion, and all the coupling constantsal numbers
despite ofyshermiticity breaking.

In the continuum theory, the eigenvalues of Dirac operator witlghermiticity spread over
the whole R&-ImA plane. Therefore, the behavior of eigenvalue@ﬁ can be interpreted as an
effect of the lattice spacing. In the case of the nglnermiticity fermions, each spectrum is paired
with complex conjugate, so that the Dirac determinant is real-valued.

We will investigate gauge theory using the ngfermiticity fermion and higher dimensional
extension in future work.
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