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1. Introduction

In recent years, there has been an renewed interest in the infrahedibur of the Landau
gauge Yang-Mills propagators, related to the gluon confinement phenomlenaarticular, lattice
studies of the Landau gauge gluon propagator

DR (@) = &% (8 — “¥ ) D) (L1)
have been performed at large volumes, with the propagators reachimigganéin-zero value in the
infrared region. While the simulations have been performed using voluniasyasag 27 fm)* for
the SU(2) gauge group [1] ar{d7 fm)* for the SU(3) gauge group [2], the lattice spacing used in
the simulations was quite big, being2@ fm for SU(2) and .8 fm for SU(3). In a recent paper
[3] by some of us, numerical evidence has been given that a large |lgiceng also changes the
propagator in the infrared region.

Gluons are not physical particles. Besides the mere question of theethtvehaviour of their
propagator, one would also like to identify signs of gluon confinement in tlaspint function.

It is already known, from lattice simulations [4, 5, 6, 7], that the Landawggagluon propa-
gator displays a violation of spectral positivity. This implies that the gluon abappear as a free
asymptotic S-matrix state and may be viewed as an indication of gluon confinefmairti-review
about gluon positivity violation can be found in [8].

Lattice studies of positivity proceed by studying the Schwinger function

© d :
ct) :1 %D(pz)exp(—lpt). (1.2)
Assuming a Kallén-Lehmann spectral representation for the gluon, we get
C(t) :/ dwp(w?)e ™, (1.3)
0

a quantity shown in Figure 1. Note that, althougft) < O implies a negative spectral density
p(w?), and hence positivity violation, a positi@(t) says nothing about the sign of the spectral
density.

2. Gluon spectral densities

Generally speaking, % (p?) = (0(p)0(—p)) is an Euclidean momentum-space propagator
of a (scalar) physical degree of freedom, then it must have a Kéllémbaan spectral representa-
tion

(%)= [ an pi(f)u (2.)

with p(u) > 0 for p > 0. The spectral density contains information on the masses of physical
states described by the operator

Our goal is to compute the spectral dengitys) from the propagata¥ (p?). We can express
eq. (2.1) as adouble Laplace transfdha- . #2p = .Z.2*p where(Z f)(t) = [5 dse Stf(s). This
is a notorious ill-posed problem. Note that f6(p?) one usually has a set of data points with error
bars.
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Figure 1: Temporal correlator for the gluon propagator computedgi80t 8 = 6.0 lattice data.

A popular approach to compute spectral functions has been the maximwpyemtethod [9].
Here we use an alternative approach, based on Tikhonov regulamnizéattoMorozov discrepancy
principle. For details see our previous papers [10, 11, 12].

To compute the spectral density we consider the integral equation

/Owdtp(t)

where for Z(t) we use lattice data in momentum space for the gluon propagator computed in
a 80" volume, withB = 6.0 [3]. In a loose way of speaking, we search for a solution to the
integral eq. (2.1) that is sufficiently close in norm to the exact but unknspacttral function.

This “sufficiently close” translates into a variational problem, which solutidfills the foregoing

eg. (2.2). The réle of the parameter> 0 is to regularize the ill-posed nature of the problem. For
practical purposes, the finite set of data points was interpolated usingspfarthermore, one has

to impose IR and UV cut-offs, although we consider a 1-loop perturbateviour aftelp%%t)ﬁ).

The integrals in eq. (2.2) are computed using Gauss-Legendre quadeatd the discretization of

eg. (2.2) leads to a linear system one has to solve in order to compute thakpeasity.

In Figures 2, 3, and 4 we study how the solution to eq. (2.2) depends owithieer of Gauss-
Legendre (GL) points, and on the IR and UV cut-offs. In what comeé¢ne number of GL points
and the UV cut-off, the results for the spectral density (left-hand pldtsjvsthat they do not
have a big influence in the results. However, we see some differences iiaghlts if we do not
consider a UV tail beyond the maximum momentum available in the lattice simulation eoegid
here. Nevertheless, the reconstruction of the input propagator {ragtd-plots) apparently does
not distinguish the several spectral functions.

On the other hand, a change in the IR cut-off has a dramatic effect in thputed spectral
function. Note that in Figure 4, the 'S’ values refer to the scale factoeslert to fit the spectral
density in the intervagl-1, 1]. Despite this, the reconstructed propagators are still indistinguishable.

This study leaded us to try to find out a clever way to compute the spectrsityjemd hope-
fully an updated method arose — see [12] for details. Although there &reahdifferences in the

4
Inf
z—t

+/\p(z):/0mdtia2 (2.2)
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Figure 2: Results for the spectral density and for the reconstructedggator with a different number of

Gauss-Legendre points.

Ag=0GeV
T T a
A =20 GeV
10 — A=50GeV | |
= A =100 Ge'
~— A =150 Ge
/ no LV tail
/ AN
& o0 ———
= I

N/

-10

Lo L
0.01 0.1
p? [GeV]

(a) Spectral density.

D(p?) [GeV]]

Ag=0GeV
10 e —— T T T
F \ A =20 GeV
% ~— A =50 GeV
a8 «— A =100 Ge
. — A =150 Ge'
3 No UV tail
e E
01 .-
0.01 _
0.01 0.1 1 10 100

p? [Gevy]

(b) Reconstructed propagator.

Figure 3: The effect of changing the UV cutoff.

deep infrared region due to the different choices of the IR cupgffthe results are much more
stable if compared with previous results — see Figure 5. Moreover, theti&fas now interrelated
with the Tikhonov parameter — see [12] for details.
Given recent results for the gluon spectral function obtained fromdhsisn of the Dyson-
Schwinger equations in the complex momentum plane [14], a comparison witlegults is in
order. It turns out that there are fundamental differences betweeresalts of the two works. In
particular, we do not see evidence for the sharp peak reported in Fidthermore, our results
show a violation of positivity setting in for small momenta, whereas in [14] patsitxiolation
occurs only for momenta above 600 MeV.

3. Results at finite temperature

In this section, we consider lattice results for the gluon propagator at fimiteetature, and
study positivity violation through the computation of the Schwinger and spdghetions.
The lattice setup for the simulations at finite temperature considered hereitegem [13].
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Figure 4: The effect of changing the IR cutoff.
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Figure 5: Results obtained using the updated method presented in [12]

3.1 Positivity violation

In this subsection, the temporal correlator defined in eq. (1.2) is computdteftongitudinal
and transverse components of the gluon propagator for all available riaims. From the results
shown in Figures 6 and 7, it turns out that positivity is violated for both trarse and longitudinal
components at all temperatures. Note that, in what concerns the trangvepmgator, the time
scale for positivity violation decreases with the temperature — see Figut@s8sdggests that, for
sufficiently high temperatures, transverse gluons can behave aspgusies.

3.2 Spectral densities

In this subsection, we consider the spectral densities, computed fraqgh2) for the longitu-
dinal component — see Figure 9. Notice that the energy scale at whickithie erossed, increases
with temperature. This means, again, that for sufficiently high temperatoregtudinal gluons
may be considered quasi-particles.
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Figure 6: Temporal correlator for the longitudinal component.
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Figure 7: Temporal correlator for the transverse component.
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Figure 8: Positivity violation scale for the transverse propagator.
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