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1. Infinite-Volume Limit and the Boundary of the First Gribov Re gion Q

Since the original work by Griboy][1], innumerous numerical and analytidies (see, for
example, the reviewd][d] 3]) have focused on the infrared (IR) beha¥ Yang-Mills Green’s
functions in minimal-Landau gauge and on its connection to color confinefier@h the lattice,
a detailed description of the IR sector of Yang-Mills theories requires trapation to infinite
volume. In minimal-Landau gauge, this extrapolation should be governedwigely accepted)
axiomt stating that

At very large volumes, the functional integration gets concentrated orotimedarydQ of
the first Gribov regiorQ [defined by transverse gauge configurations with all nonnegative
eigenvalues of the Faddeev-Popov (FP) matzy.

Thus, the functional integration should be strongly dominated at very lerigenes by configura-
tions belonging to a thin layer close &2, i.e. typical configurations should be characterized by
very small values for the smallest nonzero eigenvaluef .#. Indeed, numerical studies show
thatA1 goes to zero as the lattice volume increases.

In Ref. [B] we have introduced the following inequalities for the ghosppgatorG(p) in

where g (b, p) is the (Fourier-transformed) eigenvector of the FP matzk corresponding to
the eigenvaluel; andb = 1,2,...,N2 — 1 is a color index running over thid? — 1 generators
of the SU{N;) gauge group. Note that, on the lattice and for large lattice volumes, the smallest
nonzero momentummin is of the order of 1L, whereL is the lattice size. Thus, ; behaves as
L=2-9 in the infinite-volume limit, the inequalitg > 0 is a necessary condition to obtain an IR-
enhanced ghost propaga®(pmin) ~ 1/ pﬁjmz’( (with k > 0), as predicted in the Gribov-Zwanziger
confinement scenarip][3] and by the scaling solut[pn [6] of the DysdiwBger equations (DSES)
for gluon and ghost propagators. At the same time, if the quaftityb, pmin)|> behaves ak =

at largelL, the inequalitya — y > 0 is a sufficient condition to have > 0. Therefore, in order
to describe the extrapolation to infinite volume in the ghost sector, we cammadate the above
axiom and say that

The key point seems to be the Fast whichA; goes to zero, which, in turn, should be
related to the rate at which a thermalized and gauge-fixed configuratioroappesd Q.

This is, however, just a qualitative statement. Indeed, in order to makedkie akiom quantitative,
we need to relate the eigenvaldg to the geometry of the Gribov regidn. A first step in this
direction was taken in Ref[][7]. There, we proved a lower bound\idsee Eq.[(2]9) below] that

1This axiom is explained by considering the interplay among the volume dfgeoation space, the Boltzmann
weight associated to the gauge configurations and the step function usedsteain the functional integration to the
regionQ.

2At the same time, one needs a good projection of the eigenvggtbrx) on the plane waves corresponding to the
momentumpnmin., i.€. the exponeng should not be too large.
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relates this eigenvalue to the distance of the gauge configuratio@ from the boundary Q. As
a consequence, we were able to provide the first concrete explan&tidny the scaling solution
of the DSESs is not observed in lattice studies. The main results of [Ref. Prasented below.

2. Lower bound for A;
The (lattice) Landau gauge is usually imposed by minimizing the funcfional

EUs0] = =Tr'y w(x) Uy(x) ' (x+aey) (2.1)
S

with respect to the lattice gauge transformatiang&) € SU(N:). This defines the first Gribov
regiorf
Q={U:0-A=0, # =-D-0>0}, (2.2)

whereDP¢(x,y)[A] is the covariant derivative and/ (b, x;c,y)[A] is the FP matrix. One can show
[A] that all gauge orbits interse€) and that this region is characterized by the following three
properties [B] (see als¢][§] 7])1) the trivial vacuumA, = 0 belongs toQ; 2) the regionQ is
convex;3) the regionQ is bounded in every direction.

From the definition of#[A] [see Eq. [2]2)] it is clear that the FP matrix has a trivial null
eigenvalue, corresponding to constant vectors. Then, if we indicateAwjt# [A]] the smallest
nonzero eigenvalue o# [A], we can introduce the definition

Au[AA] = min (X, [Z[A]X) , (2.3)

wherex are non-constant vectors such thgt x) = 1. Also, by noticing that the operato§A],
M[A = —0%+ #[A] and.# [A] are linear in the gauge field, one can write

MIPA = =0+ A [pA] = (1—p)(=0%) + p#[A]. (2.4)

Atthe same time, foA € Q, p € [0,1] and using the first and second properties above, weltlage
pA € Q. This result applies in particular to configuratioisbelonging to the boundagQ of Q.
Thus, by using the definitior (2.3), Eq._(2.4) in the cAse dQ and the concavity of the minimum
function [19], i.e. min (X, [M1-+Mz] x) > min, (x,M1x)+miny (x,M2x) (WhereM;andM, are
two generic square matrices), we obtdin [7]

M[A1pA]] = M [(1-p)(=0%) + p.#[A]] (2.5)
= min (X, [(1-p) (~=0%) + p.#[A]] X) (2.6)
> (1=p)min(x,(~0%) x) + pmin (x . #[A]X) . 2.7)

3Here, we indicate witle, a unit vector in the positivel direction and witha the lattice spacing.
4For the gauge field we consider the usual (unimproved) lattice definition (see for examﬁle{ﬂ})e
5This follows immediately if we writgpA as the convex combinatigil — p)A; 4+ pAo, with Ay = 0 andA, = A.
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SinceA’ € 9Q, i.e. the smallest non-trivial eigenvalue of the FP mat#%A'] is null, and since the
smallest non-trivial eigenvalue of (minus) the Laplaciad? is pZ,;,, we find

M[ApA]] > (1—p) Phin- (2.8)

Therefore, as the lattice sitegoes to infinity, the eigenvalul [.#[pA’]] cannot go to zero faster
than(1— p) p2,, In particular, sincep2,, ~ 1/L? for large lattice sizé&., we have tha#; behaves
asL=279 in the same limit, witha > 0, only if 1— p goes to zero at least as fastlas”. Let us
stress that this result applies to any Gribov copy belongir@.to

With pA’ = A, the above inequalityf (3.8) may also be written as

M[AA] > [1-p] Pin- (2.9)

Note that, in the Abelian case, one ha& = —d2 and A; = p2,,, i.e. non-Abelian effects are
included in the factof1— p). At the same time, the quantity-1p < 1 measures the distance
(see Ref.[[[7] for details) of a configuratiohe Q from the boundanyQ (in such a way that
A =p~1Ac Q). Thus, the new bound(2.9) suggests all non-perturbative featfieeminimal-
Landau-gauge configuratioh € Q to be related to its normalized distanpefrom the “origin”
A = 0 [or, equivalently, to its normalized distance-J from the boundaryQ]. One should also
stress that the above inequality becomes an equality if and only if the eigers/eorresponding
to the smallest nonzero eigenvalues#fA] and—ad? coincide.

As a consequence of the res{lt]2.9), we can also find several nevdgoln particular, using
the upper bound in Eq[ (3.1) and the definition of the Gribov ghost fortofar (p), we have

Pin 1= 0(Pmin) T [1—p] P

and thereforeo (pmin) < p. This result is a stronger version of the so-called no-pole conéition
o(p) < 1 (for p? > 0), used to impose the restriction of the physical configuration space to the
regionQ. Similarly, for the horizon functiomd, defined in Eq. (3.10) of [12], one can prove that

1]

(2.10)

L
dV(NZ— 1)

h<p. (2.11)

3. Simulating the Math

In order to verify the new bounds presented in the previous sectionanted by considering
the third property of the regiof?, i.e. the fact thaf2 is bounded in every direction. To this end we
“simulate” the mathematical proof of this property, i.e. given a thermalizedegaagfiguratio
Au(x), we apply the scale transformati@r@ﬂ) (X) = 1, Ay(x) such thata) To=1,b) 1; = o174,

6see, for examplel] and references therein.

"In our simulations we used 70 thermalized configurations, for the SW& atB = 2.2, for lattice volumes
V = 16% 24* 32* 40* and 50 configurations (at the saifievalue) for lattice volume¥ = 48 56% 64*,72* 80%.

8Wwith this rescaling we withdraw the unitarity of the link variables, thus losing th@ection with the usual Monte
Carlo simulations. In this sense, our approach is an informal, freeasydome. Nevertheless, it gives us useful insights
into the properties of the Faddeev-Popov matrixand of the first Gribov regio®. Note also that the rescaled field
still respects the gauge condition.
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N | max(n) | min(n) | () | Reefore/1000 | Raser/1000
16 30 6 17.2 15(3) -30(12)
24 27 4 15.1 20(7) -26(6)
32 19 5 11.7 26(9) -51(20)
40| 18 4 9.4 | 155(143) -21(6)
48| 13 2 7.8 21(5) -21(5)
56| 12 3 7.6 16(4) -21(7)
64| 11 2 6.8 20(7) -42(18)
72 11 2 6.1 129(96) -42(13)
80 12 3 6.1 15(4) -24(4)

Table 1: The maximum, minimum and average number of stgpgcessary to “cross the Gribov horizon”
along the directiorAB(x), as a function of the lattice si2s. We also show the rati® [see Eq. [3]1)],
divided by 1000, for the modified gauge field§" " (x) = T, 1 Ay(x) andAl’ (X) = Ty Ay (), i.e. for the
configurations immediately before and after crossify

€) 6 =1001ifA; >5x 103, d) 6 =1.0005ifA; € [5 x 10°4,5 x 10°3) ande) & = 1.0001
if A1 <5 x 1074, with A, evaluated at the step- 1. Clearly, aftem steps, the modified gauge
field KL”) (x) does not belong to the regi@hanymore, i.e. the eigenvalue of ///[K(W] is negative
(while the eigenvalud; is still positive). Results for the number of stapeecessary to “cross the
Gribov horizon” along the directioAﬂ (x) are reported in Tablf 1. It is interesting to note that the
value ofn decreases as the lattice sideéncreases, i.e. configurations with larger physical volume
are (on average) closer to the boundagy.

In the same table we also show the value of the fatio

(éam)z

R = Alé@////

(3.1)

for the rescaled gauge fieldsy ¥ (x) = T,_1 Au(x) and A} (x) = Tn Au(X), i.e. for the configu-
rations immediately before and after crossing the first Gribov hori#@n The same ratio is also
shown in Fig[]L (left plot), as a function of the iteration stefor a typical configuration and for
the lattice volume/ = 16*. For the same configuration we also show (see [fig. 1, right plot) the
dependence ofy, || and of & on the iteration step One clearly sees that these quantities
have a slow and continuous dependence on the fagtoBn the other hand, sincg decreases
asT; increases, we find that the rafousually increasé8 with 1; and thatR,_; ~ —R,, due to the
change in sign of\; as the first Gribov horizon is crossed (see the fourth and the fifth colimns

9Here, & and & are the third and the fourth derivatives of the minimizing functional, ddfineEq. ),
evaluated along the direction of the eigenveaiotb, x) corresponding to the eigenvalag. As shown in Ref.@?,], this
ratio characterizes the shape of the minimizing functiehaaround the local minimum considered, when one applies
to & a fourth-order Taylor expansion (see in particular Figure 2 of the safagence).

1OHowever, for a few configurations, we fourﬂ [7] a very small valoethie ratioR for all factorst;, i.e. also when
the configuratiorﬁ?(x) is very close tadQ. We interpret these configurations as possible candidates to belong to the
common boundargQ N dA. HereA is the fundamental modular regiolﬂ 14], obtained by considerisglate
minima of the minimizing functiona#’[U; w] defined in Eq. 1).
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Figure 1: Left: plot of the ratioR [see Eq. l)], as a function of the iteration siegor a typical
configuration and lattice volumé = 16°. Right: plot ofA, (full circes), |£" | (full squares) and&”” (full
triangles) as a function of the iteration stepfor the same configuration considered in the left plot.

Table[l and the left plot in Fig] 1). At the same time one can check (see theptaghin Figure
[) that the second smallest (non-trivial) eigenvalyestays positive, i.e. the final configuration
ﬂﬂ') (X) = Tn Au(X) belongs to the second Gribov regi¢h [ 12].

Once we have found a configurati&ﬂ‘) ¢ Q, we can use the definition

/\(n_l) /\(n)
AL (X) = _H (X>2 A (x) = T”*lz Tn Au(X) = TAL(X) (3.2)

as a candidate for a configuration belonging to the bound&y This gives us an estimate for
the parametep = 1/7 < 1 and allows us to test the inequalities presented in the previous Section.
The numerical data tell us that most lattice configuratibnare very close to the first Gribov
horizondQ, i.e. one usually findp ~ 1 (see Figur¢]2, left plot). Moreover, the quantity-p
goes to zero reasonably fast. On the other hand, the ineqyality (2.9)¥isrfabeing saturated by
the lattice data (see Figuf 2, right plot), and the situation seems to becomenatbissinfinite-
volume limit. The same observation applies (see fig. 2, right plot) to the lowerdbimuEq.
(L.3). Finally, for large lattice sizk one findsG(pmin) < 1/A1 (see again Figurf] 2, right plot).
These results are all consistent with the fact that the eigenvegtisrvery different from the plane
waves corresponding tp2,.,, which clarifies why the ghost propagatt p) is not enhanced in
the IR limit. Conversely, configurations producing an IR-enhancedtgitopagator should almost
saturate the new bounfl (£.9), i.e. their eigenvegtpshould have a large projection on at least
one of the plane waves correspondingpfg,. Thus, in the scaling solutiorf][6], nonperturbative
effects, such as color confinement, should be driven by configusatidrose FP matrix# is
“dominated” by an eigenvectap, very similar to the corresponding eigenvector.gf = —d?,

i.e. to the eigenvectap; of the free case! This would constitute a very odd situation indeed. On
the contrary, the massive solution of the DSEs of gluon and ghost patpadIp] is consistent
with the more reasonable hypothesis that the eigenvggta in general very different from a free
wave.
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Figure 2: Left: plot of the (normalized) horizon functidn(empty circles), of the Gribov ghost form-factor
0 (pmin) (full triangles), of the quantity - A1/ p2,,, (full squares) and of their upper bound (full circles)
as a function of the inverse lattice sizeNL Let us note that, in Refm5], it was proven tleaf0) = h to all
orders in the gauge coupling. Right: plot of the inverse efltwer bound in Eq.@.l)efnpty circles), of
1/G(pmin) (full triangles), of A (full squares) and of the quantitf1— p) p2,, (full circles) as a function
of the inverse lattice size/N.
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