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(nontwisted) periodic boundary condition for link-variables in the temporal direction. This re-
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low-lying Dirac modes are not essential modes for confinement, and there is no direct one-to-one
correspondence between confinement and chiral symmetry breaking in QCD.
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1. Introduction: color confinement and chiral symmetry breaking

Quantum chromodynamics (QCD) has two outstanding nonperturbative phenomena of spon-
taneous chiral-symmetry breakird fand color confinemenB] [J]. However, their relation is not
yet known directly from QCD, and to clarify their precise relation is one of the important problems
in theoretical physic#, B 6,7, B, Q).

For chiral symmetry breaking, the standard order parameter is the chiral cond@usatend
low-lying Dirac modes play the essential role, as is indicated by the Banks-Casher ré@ion |
For quark confinement, the Polyakov lo@g) is one of the typical order parameters, and it relates
to the single-quark free enerdy, as(Lp) O e B/T at temperaturd. The Polyakov loop is the
order parameter of spontaneous breaking ofAlpecenter symmetry in QCLH].

A strong correlation between confinement and chiral symmetry breaking has been suggested
by the simultaneous phase transitions of deconfinement and chiral restoration in lattice QCD both
at finite temperatures and in a finite-volume b@f][ Their strong correlation has been also sug-
gested in terms of QCD-monopoldd [, which topologically appear in QCD in the maximally
Abelian gaugel]. Actually, by removing the monopoles from the QCD vacuum, confinement and
chiral symmetry breaking are simultaneously lost in lattice QGPWhich indicates an important
role of QCD-monopoles to both confinement and chiral symmetry breaking, and thus these two
phenomena seem to be related via the monopole.

In our previous studie§] B, [@], aiming to know the direct relation between confinement and
chiral symmetry breaking, we study confinement in terms of Dirac eigenmodes in QCD, because
low-lying Dirac modes are essential for chiral symmetry breaKlj. [ Based on completeness
of the Dirac-mode basis, we consider Dirac-mode expansion and projection where the Dirac-mode
space is restricted, and investigate the role of low-lying Dirac modes to confinement in SU(3) lattice
QCD [74 B []. Remarkably, even after removing the coupling to the low-lying Dirac modes, the
following numerically lattice-QCD results are obtained:

1. The Wilson loop obeys the area ld@[g], which indicates quark confinement.
2. The string tension, i.e., the confining force, is almost unchamg&j. [

3. The Polyakov loop remains to be almost z&8lpihdicatingZz-unbroken confinement phase.

In fact, quark confinement is kept even in the absence of the low-lying Dirac modes.

In this study, we derive an analytical relation between the Polyakov loop and the Dirac modes
in temporally odd-number lattice QCD, where the temporal lattice size is odd, and discuss the
relation between confinement and chiral symmetry breaking.

2. Lattice QCD formalism: general arguments

To begin with, we state the setup condition of lattice QCD formalism adopted in this study. We
use an ordinary square lattice with spacagnd sizeNS x N;. The normal (nontwisted) periodic
boundary condition is used for the link-varialilg (s) = €29%4:(8) in the temporal direction, with
the gluon fieldA,(s), the gauge coupling and the sites. (This temporal periodicity is physically
required at finite temperature.) In this paper, we takeNg)J(\.: color number) as the gauge group
of the theory. However, arbitrary gauge gra@gan be taken for most arguments in the following.
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2.1 Dirac operator, Dirac eigenvalues and Dirac modes in lattice QCD

In lattice QCD, the Dirac operat@® = y,D,, is expressed withl,(s) = €294 () as
1 4
Dss = E‘;Zl Vi [Up(9)3sips —U—_p(8)d ps] (2.1)

where i is the unit vector inu-direction in the lattice unit, and_,(s) = U,I(s— ). Adopting
hermitiany-matrices asy[; = Yu, the Dirac operatdp is anti-hermitian and satisfiﬁgS =—Dsy.
We introduce the normalized Dirac eigen-staeas

B|n)y =iAp|n), (m[n) = &mn, (2.2)

with the Dirac eigenvalug\, (A, € R). Because of y5,[3} = 0, the statgs|n) is also an eigen-state
of D with the eigenvalue-iA,. Here, the Dirac eigen-stape) satisfies the completeness of

> Iny(n[=1. (2.3)

For the Dirac eigenfunctiomiy(s) = (s|n), the explicit form of the Dirac eigenvalue equation
D n(S) = iAnn(s) in lattice QCD is written by

4
%_ Z VH [UIJ (S)L.Un(s"‘ i:l) _U—H (S)L.Un(s_ ﬁ)] = i)\nL.Un(S)' (2-4)
u=1

The Dirac eigenfunctiog,(s) can be numerically obtained in lattice QCD, besides a phase factor.
By the gauge transformation b, (s) — V (s)U,(S)VT(s+ 1), Yn(s) is gauge-transformed as

Un(s) = V(S)¢n(s), (2.5)

which is the same as that of the quark field, although, to be strict, there can appear an irrelevant
n-dependent global phase fac## V!, according to arbitrariness of the phase in the basi§].

Note that the spectral densityA ) of the Dirac operatdp relates to chiral symmetry breaking.
For example, from Banks-Casher’s relatifl]f the zero-eigenvalue densip(0) leads to{qg) as

(@) =—lim_lim mp(0), pA)= 1

M—0Vphys—o0 Vphys

3 (82— An)), (2.6)

n

with space-time volum¥,ys Thus, the low-lying Dirac modes can be regarded as the essential
modes responsible to spontaneous chiral-symmetry breaking in QCD.

2.2 Operator formalism in lattice QCD

Now, we present the operator formalism in lattice Q@Jg, [@]. To begin with, we introduce
the link-variable operatdﬁi,, defined by the matrix element of

(SUspS) = Uspu(8) Bocpis (2.7)
With the link-variable operator, the Dirac operator and covariant derivative are simply expressed as

1 2 1 . .

%a > Vu(Up—U_p), Dy = 5(Uu —U_p). (2.8)
u=1

D=
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The Polyakov loop is also simply written as the functional trac@ﬁt

1 . 1 N1 -
(Lp) = Y, (Tre{Ugt}) = NTV<Z”C < [L Ua(s+ nt)) ), (2.9)

with the four-dimensional lattice volumé= NS3 x Ny andf = 4. Here, “T¢” denotes the functional
trace of Tg = Y stre with the trace t over color index.
The Dirac-mode matrix element of the link-variable opera}prcan be expressed with,(s):
(mi0yIn) = 3 (mis)(s10u[s+ ) (s+ 1n) = S Wh(S)Uu(S)n(s+ ). (2.10)
S S

Note that the matrix element is gauge invariant, apart from an irrelevant phase factor. Actually,
using the gauge transformatid& ), we find the gauge transformation of the matrix elemeri@hs [

(MOuIn) = Y Wn(SUu(n(s+[1) = 5 Ym(SVT(8) -V (Up(s)V' (s+ 1) -V (s+ ) dn(s+ )
= Y Un(SUu(Sn(s+ i) = (MUyn). (2.11)

To be strict, there appears afdependent global phase factor, corresponding to the arbitrariness of
the phase in the basjis). However, this phase factor cancelséfse "% = 1 betweerjn) and(n|,
and does not appear for physical quantities such as the Wilson loop and the Polyakdd.loop [

3. Analytical relation between the Polyakov loop and Dirac modes in temporally
odd-number lattice QCD

Now, we consider a temporally odd-number lattice, where the temporal latticsizedd.
Here, we use an ordinary square lattice with the normal (nontwisted) periodic boundary condition
for the link-variable in the temporal direction. The spatial lattice dizés taken to be larger than
N:, i.e.,Ns > N;. Note that, in the continuum limit i — 0 andN; — o, any number of largé\
gives the same physical result. Then, in principle, it is no problem to use the odd-number lattice.

N, =3 case Polyakov loop
0 0
N
0 O Closed Loops

Figure 1: An example of the temporally odd-number lattice. Only gauge-invariant quantities such as closed
loops and the Polyakov loop survive in QCD. Closed loops have even-number links on the square lattice.

In general, only gauge-invariant quantities such as closed loops and the Polyakov loop survive
in QCD, according to the Elitzur theoref]]. All the non-closed lines are gauge-variant and their
expectation values are zero. Note here that any closed loop (except for the Polyakov loop) needs
even-number link-variables on the square lattice. (See Fig.1.)
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On the temporally odd-number lattice, we consider the functional trace of
~ ~AN—1
| =Trey (UaB™ ), (3.1)

where Tg, = Y stretry includes tg and the trace jrover spinor index. Its expectation value

(1) = (Trey(UaB™ ™)) (3.2)

is obtained as the gauge-configuration average in lattice QCD. In the case of enough large volume
V, one can expecgO) ~ Tr O/Tr 1 for any operato© at each gauge configuration.

From EqZZ8), Us ™1 is expressed as a sum of productdpfink-variable operators, since
the Dirac operato includes one link-variable operator in each directiont@f. Then,U, N1
includes many trajectories with the total lendghin the lattice unit on the square lattice, as shown
in Fig.2. Note that all the trajectories with the odd-number lemgtbannot form a closed loop on
the square lattice, and thus give gauge-variant contribution, except for the Polyakov loop.

N; =3 case
O O O
O O O

Gauge-variant

Figure 2: A part of the trajectories stemming fro(frrc,y(LL @M*1)>. For each trajectory, the first step is
positive temporal direction, and the total lengtiNis All the trajectories with the odd-number lendth
cannot form a closed loop on the square lattice, and thus gauge-variant, except for the Polyakov loop.

Hence, among the trajectories stemming fr()'m:,y(lll @M*1)>, all the non-loop trajectories
are gauge-variant and give no contribution, according to the Elitzur theorem. Only the exception
is the Polyakov loop. (See Figs.2 and 3.) [For each trajectody @™ 2, the first step is positive
temporal direction correspondinglfa, so that<Trc7y(04 [3N-1)) cannot include the anti-Polyakov
loop (LE,) ] Thus, in the functional tracg) = (Tre,,(Us B™~1)), only the Polyakov-loop ingredient
can survive as the gauge-invariant quantity, dnds proportional to the Polyakov looftp).

Polyakov loop
O N, =3 case
A

Gauge-invariant

Figure 3: Among the trajectories stemming froﬁﬁrc,y(LL 3M-1)), only the Polyakov-loop ingredient can
survive as the gauge-invariant quantity. Owing to the first fadio(Tre,,(Us 3™ 1)) does not includéL},).
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Actually, we can mathematically derive the following relation:

= (Trey{Ua(yaDa)¥ 1) (" only gauge-invariant terms survive
= 4(Tre(UsDy ™)) (=1t 1=4)
= (23_;;%1<TrC{04(U4—0—4)N‘1}) (" Dy= 27];3‘(04_0_4))
(2a)4Nr £ (Tre{Up'}) (. only gauge-invariant terms survive
= (2;)2;:—1<LP>- (3.3)

We thus obtain the relation betwedén = <Trcvy(04|§)Nﬁl)) and the Polyakov loofLp),

(1) = (Trey 0D ) = cgaris (L (3.4)

On the other hand, we calculate the functional trace ifE8).(sing the complete set of the
Dirac-mode basif) satisfyingy ,|n)(n| = 1, and find the Dirac-mode representation of

(1) =3 (nUs BN-Yn) = N1 ANT(n|Ugln). (3.5)
n n
Combing Eqgsi3.4) and B.5), we obtain the analytical relation between the Polyakov ligp and
the Dirac eigenvalueid:
2ai)M-1 .
B S AN LGl (3.6)

n

(Lp) =

This is a direct relation between the Polyakov lodp) and the Dirac modes in QCD, and is

mathematically valid on the temporally odd-number lattice in both confined and deconfined phases.

The relation[8.9 is a Dirac spectral representation of the Polyakov loop, and we can investigate

each Dirac-mode contribution to the Polyakov loop individually, based of8H).((For exam-

ple, each contribution specified Inyis numerically calculable in lattice QCD.) In particular, from

Eq.(3.8), we can discuss the relation between confinement and chiral symmetry breaking in QCD.
As a remarkable fact, because of the fack@f—2, the contribution from low-lying Dirac-

modes with|A,| ~ 0 is negligibly small in the Dirac spectral sum of RHS in Bog, compared to

the other Dirac-mode contribution. In fact, the low-lying Dirac modes have tiny contribution to the

Polyakov loop, regardless of confined or deconfined phase.

Here, we give several comments on the relati@@)(in order.

1) Equation[B.8) is a manifestly gauge-invariant relation. Actually, the matrix elen{aftis|n)
can be expressed with the Dirac eigenfunctigiis) and the temporal link-variablé,(s) as
(nUaln) = 5 (n|s) (slUa|s+£) (s+EIn) = 5 Wyl(9)Ua(s)dn(s+1),
S

S

(3.7)

and each terngy (s)U4(s) n(s+f) is manifestly gauge invariant, because of the gauge transforma-
tion property[2.5). [Global phase factors also cancel exactlgaé e = 1 between(n| and|n).]
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2) In RHS of Eq[B.8), there is no cancellation between chiral-pair Dirac eigen-stateandys|n),
becausgN; — 1) is even, i.e.(—A,)N 1 = AN—1 and(n|yUsys/n) = (n|Us|n).

3) Even in the presence of a possible multiplicative renormalization factor for the Polyakov loop,
the contribution from the low-lying Dirac modes (or the sma}j| region) is relatively negligible,
compared to other Dirac-mode contribution in the sum of RHS if&).(

4) If RHS in Eq.B.8) werenot a sum but a product, low-lying Dirac modes (or the siig|lregion)
should have given an important contribution to the Polyakov loop as a crucial reduction factor of
AN—1In the sum, however, the contributionl g 1) from the smallA,| region is negligible.

5) Even if (n|U4|n) behaves as thé-function 5(A), the factorAM~1 is still crucial in RHS of
Eq.8.9), because oA d(A) = 0.

6) The relation[8.6) is correct regardless of presence or absence of dynamical quarks, although the
dynamical quark effect appearsiibp), the Dirac eigenvalue distributigm(A ) and (n|U,|n).

Note that all the above arguments can be numerically confirmed by lattice QCD calculations.
Using actual lattice QCD calculations at the quenched level, we numerically confirm the analytical
relation B:8), non-zero finiteness dih|U,|n), and the negligibly small contribution of low-lying
Dirac modes to the Polyakov loop, in both confined and deconfined phases.

From the analytical relatiofB(6) and the numerical confirmation, we conclude that low-lying
Dirac-modes have tiny contribution to the Polyakov loop, and are not essential for confinement,
while these modes are essential for chiral symmetry breaking. This conclusion indicates no direct
one-to-one correspondence between confinement and chiral symmetry breaking in QCD.
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