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1. Introduction

Color confinement and chiral symmetry breaking have been investigated as interesting non-
perturbative phenomena in low-energy QCD in many analytical and numerical studies. However,
their properties are not sufficiently understood directly from QCD. The Polyakov loop is an order
parameter for quark confinemef [ At the quenched level, the Polyakov loop is the exact order
parameter for quark confinement, and its expectation value is zero in confinement phase and is
nonzero in deconfinement phase. As for the chiral symmetry, low-lying Dirac modes are essential
for chiral symmetry breaking in QCD, according to the Banks-Casher rel@jon [

Not only the properties of confinement and chiral symmetry breaking in QCD but also their
relation is an interesting challenging subjégt [By removing QCD monopoles in the maximally
Abelian gauge, both confinement and chiral symmetry breaking are lost in lattice [@CDHe
transition temperatures of deconfinement and chiral restoration are almost same in finite tempera-
ture QCD . From these facts, it is suggested that confinement and chiral symmetry breaking are
strongly correlated. In recent lattice-QCD numerical studies, however, it is found that confinement
properties do not change by removing low-lying Dirac modes from the QCD vacuum, which means
no one-to-one correspondence between confinement and chiral symmetry breaking iB]QCD [

In this study, we derive an analytical relation connecting the Polyakov loop and the Dirac
modes on a temporally odd-number lattice, and discuss the relation between confinement and chiral
symmetry breaking. As a by-product, we develop a new method for spin-diagonalizing the Dirac
operator on the temporally odd-number lattice by modifying the Kogut-Susskind (KS) formalism.
Using this method, we numerically confirm the analytical relation.

2. Dirac modes in lattice QCD

In this section, we review the Dirac operator, its eigenvalues and its eigenmodes (Dirac modes)
in SU(N) lattice QCD [B]. We use a standard square lattice with spaeingnd the notation of
sitess = (S1,%,%3,%4) (Sy = 1,2,---,Ny,), and link-variablesJ, (s) = €294« with gauge fields
Au(s) € suNc) and gauge coupling. In lattice QCD, the Dirac operat® = y, D, is given by

1 4
Dss = %a Z Yu [Uu (8)0stps —U,“(S)és_ﬁ,g] ) (2.1)

p=1

withU_,(s) = UJ(S— [1). Here,f1 is the unit vector in directiop in the lattice unit. In this paper,
we define all the-matrices to be hermite aé = yu. Since the Dirac operator is anti-hermite in
this definition ofy,, the Dirac eigenvalue equation is expressed as

Dn) = iAn|m) (2.2)

with the Dirac eigenvalué\, (A, € R) and the Dirac eigenstata). Note that the chiral partner
y5/n) is also an eigenstate with the eigenvakid,,. Using the Dirac eigenfunctiogi(s) = (3|n),
the explicit form for the Dirac eigenvalue equation is written by

e Sha VU ({5 1) U (9 Un(s— )] = iAnti(S). 2:3)
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3. Operator formalism in lattice QCD

In this section, we present operator formalism in lattice QEP First, we define the link-
variable operatdfli“ by the matrix element,

(S|0suls) =Usp(9)3sips- (3.1)
Using the link-variable operator, the Polyakov logp) is expressed as
1 A
(Le) = 5/ (Tre{U;"}) = ztrc{u4 S)Us(s+E)Us(s+20) - Ua(s+ (Na— 1)D)}), (3.2)

with the 4D lattice volum& = N1NoN3N4. Here, “Tr.” denotes the functional trace of gl ystre
with the trace t over color index. In this formalism, the Dirac operator is simply expressed as

D= > WUy ~U_p). (3.3)

4. A direct analytical relation between the Polyakov loop and Dirac modes in
temporally odd-number lattice QCD

We consider a temporally odd-number lattice, where the temporal latticé&lgizeodd, with
the normal (nontwisted) periodic boundary condition in both temporal and spatial directions. The
spatial lattice siz&;.3(> Ny) is taken to be even. As a key quantity, we first introduce

| =Tre, (UsB™ Y (4.1)

with the functional trace Er, = Y strctry including also the trace tiover spinor index. Its expecta-
tion value

(1) = (Trey(UaB™ ) (4.2)

is obtained as the gauge-configuration average in lattice QCD. In the case of large Vglome
can expectO) ~ TrO/Trl for any operator at each gauge configuration.

From EqB3), 04@'\'4_1 is expressed as a sum of productdgfink-variable operators. Since
Ny is odd,LAJ4L§N4_1 does not have any closed loops except for the term proportiohEl"‘toThere-
fore, according to Elitzur’s theorem and using B, we obtain

1 N 4 N 1V
(1= m(Trc,v{Ur"D = quc{uf‘% = W<LP>~ (4.3)
On the other hand, by performing the functional trace inE8)(with the Dirac mode basig)
satisfyingy , |n)(n| = 1, we find
(1) =Y (nl04 BN ) = N 5 AN (|G ). (4.4)
Combing Eqgs.[4.3) and E.9), we obtain the relation between the Polyakov I@bp) and the Dirac

eigenvaluesi,:

(2a| YNa—

(Lp) = Z/\N“ (n|Ug|n (4.5)
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This is a relation directly connecting the Polyakov loop and the Dirac modes, i.e., a Dirac spectral

representation of the Polyakov loop, and is valid on the temporally odd-number lattice. From this

relation @.3), we can investigate each Dirac-mode contribution to the Polyakov loop individually.
From Eq[d.5), we can discuss the relation between confinement and chiral symmetry breaking

in QCD. Because of the factdf“~1, the contribution from low-lying Dirac-modes withn| ~ 0 is

very small in the sum of RHS in E@LE), compared to the other Dirac-mode contribution. In fact,

the low-lying Dirac modes have little contribution to the Polyakov loop. This is consistent with the

previous numerical lattice result that confinement properties are almost unchanged by removing

low-lying Dirac modes from the QCD vacuufi][ Thus, we conclude from the relatidd.B) that

there is no one-to-one correspondence between confinement and chiral symmetry breaking.

5. Modified KS formalism for temporally odd-number lattice

The Dirac operatoP) has a large dimension ¢# x N; x V)2, so that the numerical cost for
solving the Dirac eigenvalue equation is quite huge. This numerical cost can be partially reduced
using the Kogut-Susskind (KS) formalisifll, [@, [7]. However, the original KS formalism can be
applied only to the “even lattice” where all the lattice sidgsare even number. In this section,
we modify the KS formalism to be applicable to the odd-number lattice. Using the modified KS
formalism, we can reduce the numerical cost in the case of the temporally odd-number lattice.

First, we recall the original KS formalism for even lattices. Using the matrix

S) = VIV Vs (5.1)
all the y-matrices can be diagonalized as
TS VT (s£ 1) = nu(9)1, (5.2)
wheren),(s) is the staggered phase,

Ns) =1, nu(s)= (=172 (u=>2). (5.3)

Then, one can spin-diagonalize the Dirac operBtais

ZT S)YuDuT (s+ [t) = diag(nuDy, NuDyu; NuDu,NuDy), (5.4)

wheren, D, is the KS Dirac operator given by

4
(MDwes = 55 3 MulS) [Un(9s ~U w955 ] 55)
u:

Equation[6.4) shows fourfold degeneracy of the Dirac eigenvalue relating to the spiror structure,
and then all the eigenvaluék, are obtained by solving the reduced Dirac eigenvalue equation

NuDy|n) =iAq|n). (5.6)
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Using the eigenfunctioin(s) = (s|n) of the KS Dirac operator, the explicit form of HE.f) reads
1 2 . SO
%a z Nu(X) U (X) Xn(X+ [) —=U_u(X) Xn(X— [1)] = iAnXn(X), (5.7)
u=1

where the relation between the Dirac eigenfunctjg(s) and the spinless eigenfunctign(s) is

Yn(S) = T(S)Xn(S)- (5.8)

Note here that the original KS formalism is applicable only to even lattices in the presence of
the periodic boundary condition. In fact, the periodic boundary condition requires

T(S+ NNI:)) = T(S) (IJ = 1727374)7 (59)

however, it is satisfied only on even lattices. Note also that, while the spatial boundary condition
can be changed arbitrary, the temporal periodic boundary condition physically appears and can-
not be changed at finite temperatures. Thus, the original KS formalism cannot be applied on the
temporally odd-number lattice.

Now, we consider the temporally odd-number lattice, with all the spatial lattice size being
even. Instead of the matrik(s), we introduce a new matrix

M(s) = i Rya g 2T, (5.10)

where the exponent gf differs fromT(s) in Eq.[5.J). As a remarkable feature, the requirement
from the periodic boundary condition is satisfied on the temporally odd-number lattice:

M(s+Nyft) = M(s) (4 =1,2,3,4). (5.11)
Using the matriXM(s), all the y-matrices are transformed to be proportionay4o
MY (9)yuM (s 1) = Npu(s)ya, (5.12)
wheren,(x) is the staggered phase given by BdJ. In the Dirac representatiop is diagonal as
ya =diag(1,1,—1,—1) (Dirac representation (5.13)

and we take the Dirac representation. Thus, we can spin-diagonalize the Dirac offeratibie
case of the temporally odd-number lattice:

Y MY(8)yuDuM(s+ f1) = diag(nuDy, NuDy, —NuDy, —NuDy), (5.14)
[

wheren,D,, is the KS Dirac operator given by E§.B). Then, for eaciA,, two positive modes and

two negative modes appear relating to the spinor structure on the temporally odd-number lattice.
(Note also that the chiral partngg|n) gives an eigenmode with the eigenvaluig\,.) In any case,

all the eigenvalueB\,, can be obtained by solving the reduced Dirac eigenvalue equation

NuDy|n) = £iAn|n) (5.15)

just like the case of even lattices. The relation between the Dirac eigenfungtish and the
sponless eigenfunctioxy(s) = (s|n) is given by

Wn(S) = M(s) Xn(s) (5.16)

on the temporally odd-number lattice.
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6. Numerical confirmation for the relation between Polyakov loop and Dirac modes

Using the modified KS formalism, EELH) is rewritten as

)N
(23'3\/4 3 AR Hnlafn (6.1)
Note that the (modified) KS formalism is an exact method for diagonalizing the Dirac operator and
is not an approximation, so that E§EX) and £.1) are completely equivalent. In fact, the relation
(@3 can be confirmed by the numerical test of the relatf@d)(

We numerically calculate LHS and RHS of the relatiédl, respectively, and compare them.
We perform SU(3) lattice QCD Monte Carlo simulations with the standard plaguette action at the
guenched level in both cases of confinement and deconfinement phases. For the confinement phase,
we use 10 x 5 lattice withB = 2N /g = 5.6 (i.e.,a~ 0.25 fm), corresponding t& = 1/(Nsa) ~
160 MeV. For the deconfinement phase, we usex18 lattice with3 = 5.7 (i.e.,a~ 0.20 fm),
corresponding td = 1/(Nsa) ~ 330 MeV. For each phase, we use 20 gauge configurations, which
are taken every 500 sweeps after the thermalization of 5,000 sweeps.

As the numerical result, comparing LHS and RHS of the relaliof) (we find that the relation
(&) is almost exact for each gauge configuration in both confinement and deconfinement phases:
Therefore, of course, the relatidf.]) is satisfied for the gauge-configuration average.

Next, we numerically confirm that the low-lying Dirac modes have negligible contribution
to the Polyakov loop using E@{). By checking all the Dirac modes, we find that the matrix
element(n|U4|n) is generally nonzero. In fact, for low-lying Dirac modes, the fadi{t* plays
a crucial role in RHS of Ed@]). Since RHS of EqG.]) is expressed as a sum of the Dirac-mode
contribution, we calculate the Polyakov loop without low-lying Dirac-mode contribution as
(2

(Le) =

(Lp)IR-cut = N ApE Y (n[Ug)n), (6.2)
[An[>AIR
with the infrared (IR) cuf\|r for the Dirac eigenvalue. The chiral condensaig) is given by
_ 1 1 1 1 1 2m v
9= T m ™ V2 im Vv <AZOW " m> 63

wheremis the current quark mass amdhe total number of zero modesBf The chiral conden-
sate without the contribution from the low- Iying Dirac-mode below IRA is given by

2m

(APAR = (6.4)

" V An;\IR )\ §+me

Here, we take the IR cut df|gr ~ 0.4GeV. In the confined phase, this IR Dirac-mode cut leads to
% ~0.02 (6.5)

(qo)
and almost chiral-symmetry restoration in the case of physical current-quarkrmassiMeV.
We find that(Lp) ~ (Lp)r-cut iS Numerically satisfied for each gauge configuration in both

confinement and deconfinement phases. Table 1 and 2 show a part of the numerical r@sylt on
and(Lp)ir-cut for confinement and deconfinement phases, respectively. In this way, the Polyakov
loop is almost unchanged by removing the contribution from the low-lying Dirac modes, which are
essential for chiral symmetry breaking. From both analytical and numerical results, we conclude
that there is no one-to-one correspondence between confinement and chiral symmetry breaking.
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Table 1: Numerical results fofLp) and(Lp)r-cut in lattice QCD with 18 x 5 andp = 5.6 for each gauge
configuration, where the system is in confinement phase.

configuration No. 1 2 3 4 5 6 7
Re(Lp) 0.00961 | -0.00161| 0.0139 | -0.00324| 0.000689| 0.00423| -0.00807
Im(Lp) -0.00322| -0.00125| -0.00438| -0.00519| -0.0101 | -0.0168 | -0.00265

Re(Lp)ir-cut 0.00961 | -0.00160| 0.0139 | -0.00325| 0.000706| 0.00422| -0.00807
Im(Lp)r-cut -0.00321| -0.00125| -0.00437| -0.00520| -0.0101 | -0.0168 | -0.00264

Table 2: Numerical results fofLp) and(Lp)r-cut in lattice QCD with 18 x 3 andpB = 5.7 for each gauge
configuration, where the system is in deconfinement phase.

configuration No. 1 2 3 4 5 6 7
Re(Lp) 0.316 0.337 0.331 0.305 0.314 0.316 0.337
Im(Lp) -0.00104| -0.00597| 0.00723| -0.00334| 0.00167| 0.000120| 0.0000482

Re(Lp)ir-cut 0.319 0.340 0.334 0.307 0.317 0.319 0.340
Im(Lp)ir-cut -0.00103| -0.00597| 0.00724| -0.00333| 0.00167| 0.000121| 0.0000475

7. Summary and concluding remarks

In this study, we have analytically derived a direct relation connecting the Polyakov loop and
the Dirac modes in temporally odd-number lattice QCD, with the normal (nontwisted) periodic
boundary condition. We have shown that the low-lying Dirac modes have little contribution to
the Polyakov loop, which means no one-to-one correspondence between confinement and chiral
symmetry breaking in QCD. As a new method, we have modified the KS formalism to perform the
spin-diagonalizing of the Dirac operator on the temporally odd-number lattice. Using the modified
KS formalism, we have numerically shown that the contribution of low-lying Dirac modes to the
Polyakov loop is negligible in both confinement and deconfinement phases.
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