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Bs→ Ds near zero recoil Mariam Atoui

1. Introduction

A precise knowledge of semileptonic decays of B-mesons brings several advantages to flavor physics. For
example, the decay channel B→ D`ν̄` allows an independent estimate of the CKM matrix element (Vcb)
which is extracted by comparing the theoretical determination of form factors with experimental measure-
ments of the partial or total decay widths. In the limit of vanishing lepton mass, the differential decay rate
of B→ D`ν̄` reads [1]

dΓ

dw
(B→ D`ν̄`) =

G2
F

48π3 (mB +mD)
2 m3

D(w
2−1)3/2 |Vcb|2 |G (w)|2 , (1.1)

where G (w) is the relevant form factor and w is the product of the velocities of the hadrons (w = vB · vD) in
the HQET framework.
The main theoretical problem is the knowledge of G (w). At the zero recoil point, w = 1, heavy quark sym-
metries play a useful role in setting G (1) = 1 in the limit of mb,c→ ∞ [2]. Together with the short distance
QCD corrections, the effect of the finiteness of mb and mc masses leads to the fact that G (1) 6= 1, which is a
non-perturbative effect that needs to be computed by means of lattice QCD.

Here we propose to study the Bs→Ds transitions in and beyond the Standard Model (SM). The decay mode
B̄0

s → D+
s `ν̄` could be studied at LHCb and especially at Super Belle. One more advantage in studying Bs

decay is that the soft photon problem is less important than in the non-strange case in which the charged and
neutral B-semileptonic decay modes are averaged [3]. From the lattice point of view, the non-strange heavy-
light mesons are more difficult because a chiral extrapolation in the valence light quark is required, which
is a source of systematic uncertainties. Working with the strange case is simpler because the light spectator
is fixed to its known mass (ms) and no extrapolation in the light quark mass is needed when computing the
form factors on the lattice.

In the following, we first introduce the relevant form factors contributing to the semileptonic decays of Bs

into Ds mesons in the SM. We then proceed to describe the simulation details as well as the strategy for our
computation. We present our results at the zero recoil point for Gs(1) and then we look for New Physics (NP)
beyond the SM in Bs → Ds`ν̄` decays by introducing the scalar and the tensor form factors. More details
can be found in Ref. [4].

2. Bs→ Ds form factors

The hadronic matrix element governing the Bs→ Ds decay is parametrized in the SM as

〈Ds(pDs
)|Vµ |B̄s(pBs

)〉= F+(q2)(pBs
+ pDs

)µ +qµ

[
F0(q2)−F+(q2)

](m2
Bs
−m2

Ds

q2

)
, (2.1)

where the vector (F+(q2)) and the scalar (F0(q2)) form factors are functions of q2 = (pBs
− pDs

)2, that can
vary within the range q2 ∈ [m2

` ,q
2
max], where q2

max = (mBs −mDs)
2.

We choose to work in the Bs rest frame and give a momentum to the Ds meson. We will take this momentum
to be symmetric in its spatial components pBs

=
(

mBs ,~0
)

and pDs
= (EDs , p, p, p). We also use the twisted

boundary conditions (BCs) [5] for the quark field. This allows to shift the quantized values of p by a

continuous amount p =
θπ

L
so that |~q|=

√
3

θπ

L
. The θ ’s we choose correspond to small momenta, thus we

are discussing the decay matrix element near zero-recoil (near q2
max). More specifically, our θ ’s correspond

to the following recoils w for Bs→ Ds`ν̄`:

w ∈ {1, 1.004, 1.016, 1.036, 1.062} . (2.2)
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Bs→ Ds near zero recoil Mariam Atoui

Note that wmax for this decay mode, in the case of massless leptons, is 1.546.
One can separate the contribution proportional to the scalar form factor F0(q2)

P0
µ〈D(pDs)|Vµ |B(pBs)〉 =

mBs +mDs

mBs −mDs

F0(q2) with P0
µ =

qµ

q2
max

, and qµ = (mBs −EDs ,−~pDs) , (2.3)

and that of the vector form factor F+(q2) as

P+
µ 〈D(pDs)|Vµ |B(pBs)〉 =~q 2 2mBs

mBs −EDs

F+(q2) with P+
µ =

(
~q 2

mBs −EDs

,~q

)
. (2.4)

3. Lattice strategy and setup

In this analysis, we use the gauge field ensembles produced by the European Twisted Mass Collaboration [6,
7] at four values of the lattice spacing corresponding to four values of the inverse bare gauge coupling β .
Dynamical quark simulations have been performed using the tree-level improved Symanzik gauge action [8]
and the Wilson twisted mass quark action [9] tuned to the maximal twist [10]. Bare quark mass parameters,
corresponding to a degenerate bare mass value of the u/d quark, are chosen to have the light pseudoscalar
mesons (PS) in the range 280 ≤ mPS ≤ 500 MeV. The details of the simulation parameters are collected in
Ref. [4].
We computed all the quark propagators by using stochastic sources, and then applied the so-called one-end
trick to compute the needed correlation functions [7]. We work with ten heavy quark masses mh starting
from the charm quark mass, m(0)

h = mc, and then successively increase the heavy quark mass by a factor of

λ = 1.176, m(i)
h = λ imc, so that after 9 steps one arrives at m(9)

h = mb = λ 9mc.
In order to extract the form factors F0(q2) and F+(q2) from lattice data, we compute the two- and three-point
correlation functions, C

(2)
H (t) and C

(3)
µ (~q, t) and, from which we then extract the desired hadronic matrix

elements as

C
(3)
µ (~q; t)

0� t� tS−−−−−→ ZBsZDs

4mBsEDs

exp(−mBst)× exp [−EDs(tS− t)]〈Ds(~k)|Vµ |Bs(~0)〉 ,

where we fix tS = T/2 (T is the size of the temporal extension of the lattice). mH , EH and ZH are extracted
from the large time behavior of the two-point correlation functions,

C
(2)
H (t) t�0−−→ |ZH |2

cosh [mH(T/2− t)]
mH

exp [−mHT/2] ,

where H stands for either Ds or Bs meson. In the computation of correlation functions we applied the
smearing procedure on the source operators (see [4] for details).

4. Extraction of Gs(1)

Often used parametrization of the matrix element (2.1) is the one motivated by the heavy quark effective
theory (HQET) and reads

1
√mBs mDs

〈Ds(vDs)|Vµ |Bs(vBs)〉= (vBs + vDs)µ
h+(w)+(vBs − vDs)µ

h−(w) . (4.1)

The desired Gs(w) is then written as

Gs(w) = h+(w)

[
1−

(
mBs −mDs

mBs +mDs

)2

H(w)

]
, where H(w) =

(
mBs +mDs

mBs −mDs

)
h−(w)
h+(w)

.
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To determine Gs at the zero recoil point, w = 1, one needs to combine h+(1) with H(1). The form factor
h+(1) can be obtained from F0(q2

max) as,

h+(1) =
mBs +mDs√

4mBs mDs

F0(q2
max) ,

whereas H(1) is not directly accessible from the lattice data. H(w) is computed at different values of w (very
close to w = 1) and then extrapolated to H(1).
In that way we computed Gs(1) for each value of the heavy quark mass mh. Note that the charm and strange
quark masses are kept fixed. We then form the ratios

Σk(1,m
(k)
h ,a2) =

Gs(1,m
(k+1)
h ,a2)

Gs(1,m
(k)
h ,a2)

,

where we indicate the dependence on the lattice spacing.
In Fig. 1(a), we see that our lattice data exhibit very little or no dependence on the light sea quark mass, or
on the lattice spacing. Each of the ratios is then extrapolated to the continuum limit and to the physical sea
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Figure 1: (a) Values of Σ3 as a function of µsea/µs. ◦ for β = 3.80, � for β = 3.90 (243), � for β = 3.90
(323),• for β = 4.05, and B for β = 4.20. The result of continuum extrapolation is indicated at µsea/µs =

mud/ms = 0.037(1).(b) Heavy quark mass dependence of the ratio σ extrapolated to the physical value of
the heavy quark mass. The vertical line represents the value of the inverse physical b quark mass. Filled
symbols correspond to σ(1,mh) extrapolated to the continuum limit with all parameters free, whereas the
empty symbols refer to the results obtained by imposing β s

k = 0.

quark mass by fitting the data to a linear function of msea
l and a2,

Σk(1,m
(k)
h ,a2) = α

s
k +β

s
k

msea
l

ms
+ γ

s
k

a2

a2
3.9

. (4.2)

Since our data do not exhibit a dependence on the sea quark mass we also extrapolated Σk(1) by imposing
β s

k = 0 in Eq. (4.2). For higher masses, the results of the continuum extrapolation have larger error bars in
the case of a free β s

k , as it can be seen in Fig. 1(b).

We identify σk(1,mh) with the continuum limit of Σk(1,m
(k)
h ,a2). Since lim

mh→∞
Gs(1)→ constant, the succes-

sive ratios σk(1,mh) satisfy lim
mh→∞

σk(1,mh) = 1. In the continuum limit, we then fit our lattice data to

σ(1,mh) = 1 +
s1

mh
+

s2

m2
h
. (4.3)
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Clearly, the problem of larger errors for large quark masses is circumvented by the above interpolation
formula because σ(1,∞) = 1 ensures that the data with larger error bars become practically irrelevant in the
fit.
Finally, after the interpolation to σ(1,mh), we obtain Gs(1) at the physical b quark mass by using a product
of σk(1) factors: Gs(1) ≡ Gs(1,mh = mb) ≡ Gs(1,mh = mc)︸ ︷︷ ︸

=1

σ0 σ1 · · ·σ7 · · ·σ8 , leading to

Gs(1) = 1.073(17) (β s
k = 0) , Gs(1) = 1.052(46) (β s

k 6= 0) . (4.4)

The result on the left, which is more accurate, agrees with the only existing unquenched Lattice QCD esti-
mate, obtained for the light non-strange spectator quark [15].
Instead of starting from Gs(1,mh = mc), we could have started from a k < 9, computed Gs(1,mh = λ (k+1)mc)

in the continuum limit, and then applied σk+1 · · ·σ8 to reach the physical b-quark mass. For example, by
taking k = 3, we obtain

Gs(1) = Gs(1,λ 4mc)σ4σ5 · · ·σ8 = 1.059(47) (β s
k 6= 0) , (4.5)

fully consistent with Eq. (4.4).

5. The scalar and the tensor form factors

Latest experimental results by the BaBar Collaboration for the ratio R(D) of the branching fractions B(B→ Dµν̄µ)

and B(B→ Dτν̄τ) suggest a disagreement with respect to the SM prediction [12]. This discrepancy, which
is around 2σ , might provide us with a first evidence for New Physics (NP) effects in semitauonic B de-
cay [13, 14].
In the models with two Higgs doublets (2HDM), the charged Higgs boson can mediate the tree level pro-
cesses, including B→ D`ν̄`, and considerably enhance the coefficient multiplying the scalar form factor in
the decay amplitude. By estimating the scalar form factor, involved in the SM theoretical prediction of these
branching fractions, we can interpret the discrepancy between the experimentally measured R(D) and its
theoretical prediction within the SM. Moreover, in the models of physics Beyond Standard Model (BSM)
in which the tensor coupling to a vector boson is allowed, a third form factor might become important. In
the present study, we make the first Lattice QCD estimate of the tensor form factor FT which, in the Bs rest
frame, is defined via

〈D(~k)|T0i|B(~0)〉=
−2imBs ki

mBs +mDs

FT (q2) , where Tµν = c̄σµν b .

We focus on the determination of the ratios

R0(q2) =
F0(q2)

F+(q2)
and RT (q2) =

FT (q2)

F+(q2)
,

at different values of q2 . q2
max, but near the zero recoil (cf. Eq. (2.2)).

R0(q2): we consider in this case ratios of R0 computed at successive heavy quark masses and with a given
value of w, namely

Σ
0
(k)(w,m

(k)
h ,a2) =

R0(w, m(k+1)
h , a2)

R0(w, m(k)
h , a2)

.

In order to obtain the continuum values σ0(w,mh) of Σ
0
(k)(w,m

(k)
h ,a2), we apply the continuum extrapolation

by using an expression analogous to the one given in Eq. (4.2). As in the previous section we observe that

5
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our data do not show a significant dependence on the sea quark mass nor on the lattice spacing.
Using the HQET mass formula for mBs,Ds [16], and knowing that h+(w) scales as a constant with the inverse
heavy quark mass, we deduce that the heavy quark interpolation can be performed by using [4]

σ
0(w,mh) =

1
λ
+

s′1(w)
mh

+
s′2(w)

m2
h

. (5.1)

The physical value of the ratio R0(w) is then obtained by R0(w,mb) = R0(w,λ k+1mc)σ0
k (w) · · ·σ0

8 (w) ,where

σ0
k (w) ≡ σ0(w,m(k)

h ). In Fig. 2(a), we illustrate the ratio σ0 for one specific value of w showing the data
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Figure 2: (a) σ0(w) as a function of the inverse of the heavy quark mass, for w = w3 = 1.016; (b) Same
as (a) but for σT (w). We see that the data obtained by assuming the independence of R0 and RT on the sea
quark mass (empty symbols) scale better than the results obtained by allowing a linear dependence on the
sea quark mass (filled symbols).

obtained by assuming both the dependence and the independence of R0(w) on the sea quark mass.

RT (q2): It can be shown that the heavy quark behavior of the form factor FT (q2) is similar to that of
F+(q2) [4]. We again define the ratios computed at two successive quark masses that differ by a factor
of λ ,

Σ
T
(k)(w,m

(k)
h ,a2) =

RT (w, m(k+1)
h , a2)

RT (w, m(k)
h , a2)

.

As in the previous cases, we extrapolate ΣT
(k)(w) to the continuum limit and observe that the result σT

k (w,mh)

does not depend on the sea quark mass nor on the lattice spacing (within our error bars). The ratios
σT

k (w,mh) are then fitted in the inverse heavy quark mass σT (w,mh) = 1 + s′′1(w)
mh

+ s′′2(w)
m2

h
, which is il-

lustrated in Fig. 2(b) for w = 1.016. The ratio RT (w) at mh = mb is then obtained by using the following
chain RT (w,mb) = RT (w,λ k+1mc)σT

k (w) · · ·σT
8 (w) , where σT

k (w)≡ σT (w,m(k)
h ) . We checked that our

results for RT (w) obtained by starting from either k = 2, 3, or 4, are completely consistent. The results are
given in Ref. [4].
To our knowledge, the only existing result for RT (q2) is the one of ref. [17] for the non-strange case
(B→ D ` ν̄`) in which the constituent quark model was used. Their result for the ratio FT/F+ was 1.03(1)
and, in their work, this ratio was predicted to be a constant with respect to the momentum transfer q2 (or the
recoil w), but no reference to the renormalization scheme or scale could have been made.

6. Conclusion

We computed the form factor Gs(1) by using the twisted mass QCD on the lattice. That form factor is nec-
essary for the theoretical description of the Bs→ Ds`ν̄` decay in the Standard Model and with the massless
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lepton in the final state ` ∈ {e,µ}. In doing so, we implemented the method proposed in [18] that allows
to reach the physical value through the interpolation of suitable ratios computed with successive heavy “b”
quark masses for which a value for mh→ ∞ is fixed by symmetry. Our final result is Gs(1) = 1.052(46).
Moreover, following the same methodology and restricting our attention to the small recoil region, we have
determined the ratio of the scalar form factor to the vector one and for the first time in LQCD the tensor form
factor with respect to the vector one. Of several w’s, we quote

F0(q2)

F+(q2)

∣∣∣∣
q2=11.5GeV2

= 0.77(2) and
FT (q2)

F+(q2)

∣∣∣∣
q2=11.5GeV2

= 1.08(7) .

The above results are important for the discussion of this decay in various scenarios of physics BSM.
The same analysis has been done for the case of the non-strange decay mode and the results are fully
consistent with those present for the Bs→Ds`ν̄`, but with larger statistical errors. More details can be found
in [4].
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