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Set a/ f m au0masq
l / au0masq

s Ls/a×Lt/a nc f g T
1 0.12 0.005/0.05 24 × 64 2088 12, 15, 18
2 0.12 0.01/0.05 20 × 64 2259 12, 15, 18
3 0.09 0.0062/0.031 28 × 96 1911 16, 19, 20, 23

Table 1: Details of the gauge configurations used in this calculation. The configurations were generated by
the MILC collaboration and contain N f = 2+1 flavours of asqtad sea quarks.

1. The semileptonic decay Ds→ φ`ν

1.1 Lattice calculation

We have calculated the vector and axial vector form factors which appear in the decay Ds→
φ`ν . This is a transition between pseudoscalar and vector mesons and the same methods can be
used for other transitions, such as the charmonium radiative decay J/ψ → ηcγ [1].

We use the improved staggered HISQ action [2] for s and c valence quarks and work on gauge
configurations generated by the MILC Collaboration that include 2+1 flavours of asqtad sea quarks
[3]. The details of the configurations we have used are listed in Table 1.

To extract the transition matrix element, we calculate 2-point and 3-point correlation functions.
We simulate the φ meson as a s̄s vector meson and a diagram of the 3-point correlator for the
Ds→ φ transition is shown in Figure 1. We create a φ meson at time 0 and destroy the Ds at T . At
an intermediate time t, we insert a vector or axial vector current. We perform a simultaneous fit to
the Ds and φ 2-point correlators and 3-point correlators with multiple values of T .

We use Bayesian methods [4] to fit the correlators to the following fit forms where we include
oscillating contributions from opposite parity states because we are using staggered quarks:

C(P)
2pt (t) = ∑

i
{a(P)i }

2[e−Et + e−E(Lt−t)]+oscillations (1.1)

CP→Q
3pt (t,T ) = ∑

i, j
a(P)i [e−Et + e−E(Lt−t)]Ji, ja

(Q)
j [e−E(T−t)+ e−E(Lt−T+t)]+oscillations. (1.2)

The fit parameters ai appear in both the 2-point and 3-point fit forms and this allows us to
extract the Ji, j which are simply related to the current matrix elements we need, 〈Ds|Γ|φ〉.

The general form for the Ds→ φ transition matrix element is given by [5]

〈φ(p′,ε)|V µ −Aµ |Ds(p)〉 = 2iεµναβ

mDs +mφ

εν pα p′
β
V (q2)− (mDs +mφ )ε

µA1(q2) (1.3)

+
ε ·q

mDs +mφ

(p+ p′)µA2(q2)+2mφ

ε ·q
q2 qµ(A3(q2)−A0(q2))

where the A3(q2) form factor is defined as

A3(q2) =
mDs +mφ

2mφ

A1(q2)−
mDs−mφ

2mφ

A2(q2). (1.4)

At q2 = 0, the form factors obey the relation

A3(0) = A0(0). (1.5)
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Figure 1: A diagram of the quark propagators in the 3-point function. Propagators 1 and 3 are strange quark
propagators and propagator 2 is a charm propagator.

We simulate with the Ds meson at rest and access the full physical range of q2 (from q2 = 0
to q2

max = (mDs−mφ )
2) by giving momentum to the φ meson. We use twisted boundary conditions

[6] to tune pφ and extract each form factor from Equation 1.3 by arranging the kinematics such that
the expression for the matrix element simplifies.

We can get A1(q2) by choosing the φ polarisation and momentum so that ε ·q = 0. In this case,
Equation 1.3 reduces to

〈φ(p′,ε)|Aµ |Ds(p)〉= (mDs +mφ )ε
µA1(q2). (1.6)

We have some choice of the staggered φ and Aµ operators we use in the correlators as we can
use local or point-split operators for Aµ and φ . These operators differ only in taste so the differences
between them are a discretisation effect. We find for HISQ that these are very small. The vector and
axial vector operators we use for the weak currents are nonperturbatively normalised. Details of
the methods used for current normalisation are in [7]. The A0(q2) form factor is not experimentally
accessible as it is suppressed by the lepton mass, but is straightforward to calculate. Using the
PCAC relation, we have

qµ〈φ(p′,ε)|Aµ |Ds(p)〉= 2mφ ε ·qA0(q2) = (mc +ms)〈φ(p′,ε)|γ5|Ds(p)〉. (1.7)

The local pseudoscalar current needed here is absolutely normalised.
The A2(q2) form factor is needed to reconstruct the decay rate, but only enters the matrix ele-

ment when ε ·q 6= 0. The easiest way to extract it from the matrix element is to use our knowledge
of A1(q2) and A0(q2). This is easiest at q2 = 0 because we have relation A0(0) = A3(0).

We get V (q2) using a vector current insertion in our 3-point correlator. To make a taste-singlet
correlator, we use the spin-taste γµ ⊗ γµγν vector operator for our φ and use γtγ5⊗ γtγ5 for the Ds.
For a vector current, Equation 1.3 becomes

〈φ(p′,ε)|Vα |Ds(p)〉=
2iεµναt

mDs +mφ

ε
µEDs pν

φV (q2). (1.8)

We plot the form factors we obtain in Fig 2. The points are the lattice data on each of the three
ensembles we use and the shaded bands show the form factors as a function of q2 for the physical
range after extrapolating to the continuum and to physical sea quark masses.
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Figure 2: The Ds→ φ`ν form factors as a function of q2. The points are the lattice data on each configura-
tion and the shaded bands are the extrapolated form factors between q2 = 0 and q2

max.

The physical limit is reached using an extrapolation in z space, defined as

z(q2) =

√
t+−q2−√t+√
t+−q2 +

√
t+

, (1.9)

where t+ = (MDs +Mφ )
2 and t0 = 0.

By converting q2 to z, the semileptonic region is mapped to |z| < 1 and the form factor can
be fitted as a power series in z. We do the chiral and continuum extrapolation by allowing the co-
efficients of each term in the z-expansion to depend on lattice spacing and the difference between
the sea quark masses and their physical values, δl [8]. For each form factor (A1, A2, V , A0), we fit
to

F̃(z) =
3

∑
n=0

An
{

1+Bna2 +Cna4 +Dnδl
}

zn. (1.10)

1.2 Comparison with experiment

The differential decay rate for Ds→ φ`ν is given by [5]

dΓ(Ds→φ`ν ,φ→K+K−)
dq2d cosθKd cosθ`dχ

=
3

8(4π)4 G2
F |Vcs|2

pφ q2

M2
Ds

B(φ → K+K−)× (1.11){
(1+ cosθ`)

2 sin2
θK |H+(q2)|2

+(1− cosθ`)
2 sin2

θK |H−(q2)|2

+4sin2
θ` cos2

θK |H0(q2)|2

+4sinθ`(1+ cosθ`)sinθK cosθK cos χH+(q2)H0(q2)
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−4sinθ`(1− cosθ`)sinθK cosθK cos χH−(q2)H0(q2)

−2sin2
θ` sin2

θK cos2χH+(q2)H−(q2)
}
.

The decay angles are defined for a D+
s decay as: θ`(K) the angle between the momentum of the

`(K+) and the centre of mass momentum of the `ν(K+K−) pair, and χ is the angle between the
two planes defined by the `ν and K+K− pairs. For a D−s , the K− is used in place of the K+ in the
definition of θK and χ →−χ . The decay angles are shown in Figure 3.

W

l+

νl

θl φ

Ds

K+

K−

θK

χ

Figure 3: A diagram of the angles which appear in the decay rate.

The decay distribution is written in terms of helicity amplitudes (as the Ds is a pseudoscalar,
the W and φ helicities are constrained to be the same), which are related to the form factors as

H±(q2) = (MDs +Mφ )A1(q2)∓
2MDs pφ

MDs +Mφ

V (q2). (1.12)

and

H0(q2) =
1

2Mφ

√
q2

[(M2
Ds
−M2

φ −q2)(MDs +Mφ )A1(q2)−4
M2

Ds
p2

φ

MDs +Mφ

A2(q2)]. (1.13)

We construct these helicity amplitudes from the continuum extrapolated form factors. In Fig-
ure 4, we plot the the combination pφ q2|Hi(q2)|2, which is how they appear in decay rate. After
integrating over the angular distributions, each helicity amplitude has the same overall factor in the
decay rate, so the relative contribution of each one to the distribution in q2 is as shown in Figure 4.

We can reconstruct the decay distributions as functions of all four of the kinematic variables
by integrating over the other three. The angular integrals are straightforward and we do the q2

integration numerically. These are plotted in Figure 5, where the red points (with error bars) are
the decay rate for each bin calculated from our lattice form factors. The blue histograms are the
decay distributions from the form factors obtained by the BaBar experiment [9].

We can extract a value for Vcs, the CKM matrix element which appears in the charm to strange
decay. By integrating over all the kinematic variables, we can obtain a lattice determination of
the total decay rate and compare to BaBar’s measurement of the Ds → φ`ν branching fraction.
The lattice and experimental decay rates differ by a factor of V 2

cs. This comparison gives us
Vcs = 1.017(60), which is in agreement with values of Vcs extracted from lattice calculations of
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Figure 4: Each of the Ds→ φ`ν helicity amplitudes as a function of q2. The helicity amplitudes Hi(q2) are
plotted as pφ q2|Hi(q2)|2. At q2

max, pφ = 0 so all the helicity amplitudes vanish.
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Figure 5: The decay distributions as a function of each of the kinematic variables. The red points are
obtained by integrating the lattice form factors and including the value of Vcs from unitarity and the blue
bins are from BaBar.
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pseudoscalar to pseudoscalar semileptonic decays [10] and the Ds leptonic decay rate [11]. It also
agrees with Vcs from unitarity.

Our final value for Vcs includes a systematic error to account for the coupling of the φ meson
to KK̄ states [12].

2. Other transitions

We can use similar staggered 3-point correlation functions to study other transitions. For
example, the same methods used to find the vector form factor can be used for the J/ψ → γηc

radiative decay, as studied in [1]. Similar correlation functions are required for the decay of a
pseudoscalar meson π0/ηc→ γγ .

Further semileptonic transitions between pseudoscalar and vector mesons can be studied using
heavier quark masses than charm. For example, these methods could be used to extract form factors
for B(s)→ D∗(s)`ν .
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