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We report on our on-going study of the Ds to η(′) semi-leptonic decay form factors with n f = 2+1
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1. Introduction

The semi-leptonic decay Ds → lν̄lη(′) carries information about η-η ′ mixing so that the inves-
tigation of this mode helps to understand the mixing angle and also possible gluonic contributions
[1]. For decays involving η ′, the chiral anomaly should play some role and it is an interesting play-
ground for obtaining a deeper understanding of the quantum field theory. There are no published
results on the form factors from the lattice, while predictions from light cone QCD sum rule [2, 3]
are available.

The relevant matrix element for these decay modes is

〈η(′)(k)|V µ(q2)|Ds(p)〉= f+(q2)

[
(p+ k)µ −

M2
Ds
−M2

η(′)

q2 qµ

]
+ f0(q2)

M2
Ds
−M2

η(′)

q2 qµ , (1.1)

where V µ is a vector current and MDs and Mη(′) are the masses of the Ds and η(′), respectively. This
matrix element is characterized by two form factors, f0(q2) and f+(q2). So far, we have focused
on the scalar form factor f0(q2), which we can also obtain from a scalar current S = s̄c,

f0(q2) =
mc −ms

M2
Ds
−M2

η(′)

〈η(′)|S|Ds〉. (1.2)

We use this relation because the combination (mc −ms)S (and therefore f0(q2)) does not receive
renormalization due to the partially conserved vector current [4].

The three point function needed to compute the form factor contains fermion disconnected
loops, shown pictorially here:

〈η (′)(~k)|S(~q)|Ds(~p)〉=
p p

q
cs

s D

η, η’
D S

− ∑
l=u,d,s

(
D

k p

q cl

s

η, η’
S

)
. (1.3)

The disconnected loops should be summed over three light flavors which enhances the magnitude
roughly by a factor of three. These loops contain the contributions from the chiral anomaly to
the η ′-meson. For these reasons, the disconnected loops may contribute significantly. As already
reported in [5, 6], the calculation is feasible and the contributions are indeed significant.

We use QCDSF n f = 2+ 1 configurations [7, 8]. The actions are the tree level Symanzik
improved action for the gluon and the non-perturbative stout link improved clover action for the
quarks. We use the same action for the valance charm quark with the mass tuned to give the
physical mass of the 1S spin averaged charmonium state. The u-, d- and s- quark masses are tuned
so that their average 1

3(mu +md +ms) is fixed and that 2M2
K +M2

π coincides with the physical
values. At the SU(3) flavor symmetric point we have mu,d = ms, and in taking the chiral limit
we reduce mu,d and increase ms with their average fixed. Due to this strategy of choosing quark
masses, it is natural to treat η and η ′ using the SU(3) flavor octet-singlet basis. The lattice size we
have used so far is 243 ×48 and the lattice spacing is a ' 0.08fm. We used 939 configurations at
the SU(3) flavor symmetric point (Mπ ' 450MeV) and 239 configurations with lighter u/d quarks
(Mπ ' 348MeV).

The most computationally expensive quantity to calculate is the fermion one point loop,

C f
1pt(t,~k) = ∑

~x
exp(i~k ·~x) tr

[
∑
~x′,~x′′

γ5φ(~x,~x′′)M−1
f (t,~x′′; t,~x′)φ(~x′,~x)

]
= γ5

t,~k

f
, (1.4)
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where M f is the Dirac operator for flavor f and φ(~x,~x′) is a smearing function. We combined the
stochastic estimation with low mode averaging (with 24 or 40 eigen modes), hopping parameter
acceleration, spin and time dilution (non-zero stochastic noise on every 4 time slices), and the
truncated solver method [9].

The low eigenmodes of the light and strange quarks calculated for C f
1pt were also used for the

low mode averaging of the connected two point functions, and for a similar trick for the discon-
nected three point functions. We used the stochastic method to obtain the connected three point
function, which has an advantage over the other methods since it enables us to access many mo-
mentum combinations at a relatively lower cost [10].

2. Extracting η and η ′ states

To calculate the matrix element (1.3), we first need to build the interpolating operators for
the Ds and the η (′) meson. The operator for the Ds is easy to obtain but ones for η(′) are non-
trivial due to the mixing. We start with SU(3) octet-singlet basis, η8 = 1√

6

(
uū+dd̄ −2ss̄

)
and

η1 =
1√
3

(
uū+dd̄ + ss̄

)
. We can build the following 2×2 two-point correlation function by using

smeared interpolating operators O8 for the octet and O1 for the singlet:

C2(t;~k) =

(
〈O8(t;~k)O

†
8 (0)〉 〈O8(t;~k)O

†
1 (0)〉

〈O1(t;~k)O
†
8 (0)〉 〈O1(t;~k)O

†
1 (0)〉

)
. (2.1)

Here, t is the sink-source time separation and the operators at the sink are projected on to mo-
mentum ~k. Each element of eq. (2.1) contains both connected and disconnected fermion loop
contributions. We made use of the translational invariance in the time direction to calculate the
disconnected two point function.

The diagonalized two point functions give the η and η ′ two point functions. The eigenvectors,
which can be parameterized by one mixing angle θ , give interpolating operators for η and η ′:

Oη = cosθ O8 − sinθ O1, Oη ′ = sinθ O8 + cosθ O1. (2.2)

The mixing angle above corresponds to a mixing between the interpolating operators and is not the
mixing of the physical observable. In the SU(3) flavor symmetric case, there is no mixing so the η ′

is purely η1 and the η is purely η8. The effective masses after applying an improvement described
below are plotted in Fig. 1.

We can improve the measurement of the mass using a relation for the finite volume effects.
For simplicity, let us consider the SU(3) flavor symmetric case, in which the η ′ is purely η1. It
is well-known that the mass of η ′ is sensitive to the fluctuation of the topological charge. In the
extreme case at fixed topology, the correlation function for the topological charge density ρ(x)
tends to a constant for large separation [11]

〈ρ(x)ρ(0)〉Q
|x|→∞−−−→− 1

V4

(
Q2

V4
−χt

)
+ · · · , (2.3)

where χt is the topological susceptibility and the expectation value is taken in a sector of topological
charge fixed to Q. This correlation function is essentially the η ′ two point function. The above
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Figure 1: Effective mass plot of η ′ and η . For comparison, the effective mass of the π is also plotted. Left
panel: Mπ = 348MeV case. Right panel: Mπ = 450MeV case (SU(3) flavor symmetric), where π = η = η8

and η ′ = η1. Fits were obtained without using the dispersion relation.

expression assumes that the full Q fluctuation is Gaussian and that the higher terms in 1/V4, the
inverse four-volume, are negligible.

Eq. (2.3) implies that for finite statistics, where the Q-distribution deviates from the true dis-
tribution due to the statistical fluctuations, one may observe the remnant of the constant part in the
η ′ two-point function for~k =~0. This is indeed the case for the SU(3) symmetric point. We could
simply remove the constant part by fitting. We used, however, an improved observable as follows.
Noting that the topological charge can also be obtained from the pseudo-scalar density, we can
relate it to a disconnected fermion loop of flavor l (= u = d = s), C l

1pt :

Q =
1
α ∑

x
C l

1pt(x) =
1
α ∑

t
C l

1pt(t,~k =~0) =
1
α ∑

x
γ5

x

l
≡ 1

α
Ql , (2.4)

where α depends on the quark mass ml and the renormalization. We used eq. (2.3) and (2.4) to
reduce a Q-dependent fluctuation in the two point function:〈

O1(t;~k =~0)O†
1 (0)−

3
TV4

Q2
l

〉
t→∞−−→

|Zη1 |2

2Mη1

exp(−Mη1t)+α2 3χt

TV4
+ · · · , (2.5)

where T is the lattice size in the time direction and Zη1 = 〈η1|Oη1 |0〉. Fitting the above with a
functional form of Aexp(−Mη1t)+B, gives a better estimation of Mη1 . This method applies only
in the~k =~0 case, since the Fourier transformation of the r.h.s in eq. (2.3) vanishes for~k 6=~0. The
effective mass with and without the improvement are plotted in Fig. 2.

Finally we combined the non-zero momentum data and the dispersion relation. In Fig. 3, we
plot the energy at momentum ~k and the fitted dispersion relation. Even after the improvement
described here, the~k =~0 data has a larger error than some of the~k 6=~0 data. We applied a similar
improvement to the ml 6= ms case. For this ensemble, we did not observe a significant constant term
in the two point function before the improvement, however, subtracting the corresponding of the
Q2

l term in eq. (2.5) significantly reduced the statistical fluctuations.

3. Results

Having obtained the interpolating operators (2.2), we can construct the three point function

4
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Figure 2: Effective mass of the η ′ at SU(3) sym-
metric point. The naive plot (blue square) is af-
fected by the remnant constant, while the improved
one (red triangle) shows a clear plateau. The plot
with the remnant constant removed but without us-
ing eq. (2.5)(green diamond) has a larger error.
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Figure 3: Spectrum and fitted dispersion relation
of η ′. Both lattice and continuum relations give the
same result within the error. To improve visibility,
the resulting masses from the dispersion relation
are slightly shifted to the left.

needed for the form factor:

C3pt(t,~p,~q,~k) = 〈0|Oη(′)(~k, tsep)S(~q, t)O
†
Ds
(~p,0)|0〉

=
Zη(′)

2Eη(′)

ZDs

2EDs

exp
[
−EDst −Eη(′)(tsep − t)

]
×
[
〈η (′)(~k)|S(~q)|Ds(~p)〉+ · · ·

]
, (3.1)

where tsep is the sink-source separation. By fitting the two point function

CDs
2pt(t,~p) =

|ZDs |2

2EDs

exp [−EDst]+ · · · (3.2)

for the Ds and similar ones for the η and the η ′, we obtained ZDs and EDs etc, which allowed us to
extract the matrix element 〈η (′)(~k)|S(~q)|Ds(~p)〉 from eq. (3.1). Thus, using eq. (1.2) we computed
the scalar form factor f0(q2) from the matrix elements. As we will discuss below, we removed
excited contributions and obtained the matrix elements between the ground states. The preliminary
results are plotted in Fig. 4, where the errors were obtained from a jackknife analysis. We fit
the results with one pole functions, f0(q2) = f0(0)/(1 − bq2). The preliminary values at zero
momentum transfer are f Ds→η

0 (0) = 0.52(2) and f Ds→η ′

0 (0) = 0.42(4) for the SU(3) symmetric
case, f Ds→η

0 (0) = 0.59(5) and f Ds→η ′

0 (0) = 0.41(5) for the Mπ = 348MeV case.

To extract the matrix element between the ground state of Ds and η(′), it is important to remove
the excited contributions. We tuned the smearing to suppress the excited contributions, however,
some residual pollution of the three point function remains. If we could take tsep and t large enough,
the residual pollution would be negligible. We cannot use such large tsep and t since the statistical
errors become unreasonably large. After removing the leading exponential factors by taking a ratio,

5
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Figure 4: Preliminary results for the scalar form factor f0(q2), at the Mπ = 348MeV point (left panel) and
the SU(3) flavor symmetric point (right panel).
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Figure 5: Fit of R(t) with excited contributions from Ds and η , from the Mπ = 348MeV ensemble. Ds
(
~p =

(1,0,0))
)

is located at t/a = 0 and η
(
~k = (1.0,0)

)
is at t/a = 8, 10 and 16. The data points with open

symbols were not used in the fitting.

we have

R(t)≡
C3pt(t,~p,~q,~k)

Zη(′)
2Eη(′)

ZDs
2EDs

exp(−EDst −Eη(′)(tsep − t))

= 〈η (′)(~k)|S(~q)|Ds(~p)〉+A1 exp(−∆EDst)+B1 exp(−∆Eη(′)(tsep − t))+ · · · , (3.3)

where ∆EDs and ∆Eη(′) are the energy gaps to the first excited state. We simultaneously fit the
ratio (3.3) with three different tsep/a = (8,10,16) (for η in the SU(3) symmetric point, we also
used tsep/a = 24) by three terms in the r.h.s., using the energy gaps obtained from the two point
functions. If the two point function did not allow us to extract ∆Eη(′) , we used the first two terms,
only, in eq. (3.3). A typical example of the fitting is shown in Fig.5. The plot shows that the ratio
is described well by our fit ansatz.

4. Conclusions

The lattice calculation of semi-leptonic decay form factors for Ds → lν̄η and Ds → lν̄η ′ are
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feasible, including the disconnected fermion loop contributions. This is the first lattice result for
these form factors and we can obtain the scalar form factor f0(q2) at q2 = 0 with 10–15% statistical
error at Mπ ' 450 and 348MeV.

We are planning to calculate the other form factor f+(q2), which requires a renormalization
factor. Other targets are the form factors corresponding to the decay into φ , for which a rigorous
treatment requires disconnected fermion contributions. The mixing of η and η ′, and its quark mass
dependence are also interesting.
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