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decay branching rati® — D’m, and emphasize phenomenological implicationsBor> D'l v
semileptonic decay. We have estimated by lattice QCDDthdecay constanfy that parame-
terizes theD’ emission contribution to the Class-IIl non leptonic de@y— D% . In addi-
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Figurel: D (left panel) and*rm (right panel) mass distributions obtained at Babar [1].

1. Introduction

Understanding the long-distance dynamics of QCD is of kgyartance to control the theo-
retical systematics on low-energy processes that aretigaésd at LHC in order to detect indirect
effects of New Physics. With that respect beauty and chammesbns represents a particularly
rich sector. Recently, the Babar Collaboration claimedaweehisolated a bench of neli states
[1]. DrandD*mr mass distributions are depicted in Figure 1: in the formee observes a clear
peak, corresponding to the stdd(2460), and two "enhancements" that are interpreted as states
D*(2600 andD*(2760. In the latter, one observes a peakDat2420 and distinguishes two
structures that are interpreted B62550 = D’ andD(2750). Performing a fit, experimentalists
obtainm(D’) = 25398) MeV andl" (D) = 130(18) MeV. A first question raised about the fairness
of this interpretation because, on the theoretical sidarigmodels predicted roughly the saibé
mass (2.58 GeV) but a quite smaller width (70 MeV) [2]. Howelleere is a well known caveat
here: excited states properties are very sensitive to théiqgo of the wave functions nodes, that
actually depend strongly on the quark model. Examinatiregsbmileptonic deca — D’lv,
assuming it is quite large [3] and using the fact théd’ — D, /,m) > (D" — D3/2n)1, one ar-
rives at the conclusion that an excessBof» (Dy/,)lv events could be observed with respect
to their B — (D3/pm)lv counterparts. One may then wonder whether such a potgnlate
B — D'lv width could explain the "1/2 vs. 3/2" puzzléf (B — D;/,lv) >~ I'(B — Dg3/,lv)]®®
while [[(B — Dyplv) < T'(B— Dg,/zlv)]theory [4]. Finally there is still a~ 30 discrepancy be-
tween the exclusive determination of the CKM matrix elem&ptand its inclusive determination,
mainly due to a very small error on both side/,|® is extracted fromB — D™*)lv decays
and needs, at a normalization point, the theoretical coatiout of the form factors associated to

ISpectroscopy notation®; , = {Dg, D1}, D3> = {D1, D3}.
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B — D™ transitions. An analysis performed in the OPE formalisrruadgthat a largd — D’
form factor is going together with a small suppression ofBhe: D™*) counterpart [5]: one may
ask whether it could involve a reduction of the discrepareizen|Vep|®® and|Ve,| " [6].

2. Non leptonic B — D’ decay

We have proposed in [7] to check the hypothesis of a largechiag ratio%(B — D’lv) by
studying non leptonic decays. First, considering the ClasscessB® — D'* 11—, one has in the
factorisation approximation

%(BOH D/+7T_) o <rn§_m2D’>2 |:)\(mB>mD’7m7T):|1/2
m%— m% )\(mBamD>m7T)

, 2
52 0)

o) @Y

%(BOH D*TF)

A2 =D (y+ 22— (y-273, 70 m2) ~ £27°0(0).
UsingVep 2P (0) = 0.026428) from Babar [8] andVep|™ = 0.0411(16), we deducef B~ (0) =
. . A _0*, / D 2 .
0.64(2). Then, withmo = 2554 GeV, we obtair g-37) = (1.65::0.13) x | {-0'(0)| . with
#(BY — D) = 0.26813)%, we have finally

, 2
BB D) = ‘ {B-D (0)( ¥ (4.7+0.4) x 1072, (2.2)

Letting vary thefEﬁD'(O) form factor in a quite large range [0.1, 0.4], according te éxisting
theoretical estimates [3], [9], we conclude thétB° — D'+ 71 )" ~ 10~4: it can be measured with
the B factories samples and at LHCb.

Second, investigating the Class Ill proc&s— D01, we write the factorised amplitude in
the following way:

= =3 RN [ — ] 122 (08 + 2oy [ — ) )

Normalising the corresponding branching ratio by the Classinterpart, we get

1 _=
BB —D*m) 1 ta s

%FHWTLm[ a %4@gﬁ%@y@r
a  m-mg~ fE0(0) fo fr]

The ratio of Wilson coefficienta,/a; is determined frorrﬁzg:—m, known experimentally [6],

and it remains to compute on the lattice the ratios of decaystamts% and;—z.

3. Lattice calculation

Our analysis is based on simulations built by the ETM Coltation [10] with N = 2 fermions
regularised with the Twisted-mass QCD action tuned at makimist. At a fixed lattice spacing
we crosscheck our results on a simulation performed by th®$FCcollaboration with N= 2
Wilson-Clover fermions [11] and a third one realised in theched approximation. We collect
the simulations parameters in Tables 1 and 2. A first way @ekinp, and fD;q is to consider the
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B 3.8 3.9 3.9 4.05 4.2 4.2
L3xT | 24°x48 24 % 48 32 x 64 32 x 64 32 x 64 48 x 96
# meas 240 240 150 150 150 100
Hseal 0.0080 0.0040 0.0030 0.0030 0.0065 0.002D
Hsea2 0.0110 0.0064 0.0040 0.0060
Useas 0.0080
alfm] | 0.098(3) 0.085(3) 0.085(3) 0.067(2) 0.054(1) 0.054(1)
Us 0.0194(7) 0.0177(6) 0.0177(6) 0.0154(5) 0.0129(5) 0.(ARZ
Ue 0.2331(82) 0.2150(75) 0.2150(75) 0.1849(65) 0.1566(55)1566(55)

Table 1: Lattice ensembles used in this work with the indicated nurobgauge field configurations. Lattice spacing
is set by using the Sommer parameigta, with ro = 0.440(12) fm fixed by matchingf; obtained on the lattice with its
physical value (cf. ref. [12]). Quark mass paramejeia@e given in lattice units.

0 6.2(1.614) 22x48 200 — 01348 0.12%
2 54(1.823) 23x48 160 0.13625 0.1359 0.126

Table 2: Lattice set-up for the results obtained by using the Wilsangg and the Wilson-Clover quark actictiea
Ks andk¢ stand for the value of the hopping parameter of the sea,gerand the charm quark respectively.

two-point correlator

Copg) = (S Po (%R (0;0))
X
2 cosimp,, (T /2 —1)]

fpaalil

% “ffD emeqT/z'

q
We define a modified two-point correlation function by suttiray the ground state contribution:

2 cosimp, (T /2—1)]

emeqT/Z;
mMp

Cpyp, (t) = Coypy (1) — | 20,

q

T
Chpa © cosh{ﬁﬁz (t) (Etﬂ
Cogog D) — T
qDq cosh{r‘rﬁé(t)(gtl>:|
constantfp, from a fit of Cp p .

An alternative approach consists in using a basis of intetipg fieldsPs,i = WeiY° Wqi by smearing

we extract the effective massp, from the ratio and the decay

N
with a "Gaussian" wave function the local fielghg g Ye(q)i = (i’g?(g') We(q)»

with Hij = 35_; (Uir;'f,chm +UirEL;“d_“7j>; U is an, times APE smeared link. We solve the
generalized eigenvalue problem (GEVP):

CbyDqij (t)VE’” (t,to) =A™ (t,10)CpyDyij (to)Vgn) (t,to).
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Figure 2: Plateaus ofmp andmy (left panel), fp and fpr (right panel) for the ETMC ensemb|g =
3.97 I.,lsea: 00064
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Figure3: Chiral and continuum limit extrapolations ofy /mp and fp / fp.

The projected creation operator that has the largest caufithen™ excited state is defined by

to) = Y " (t.t0)Po,i (DF"[P)10) = Ao (3.1)

Effective masses and decay constants read

r a3 Coyg Li(OM" (¢, o)

z t (t,10)CpyDyij (t)Vin) (t,to)7
i

A m (t + l7t0) + A ™ (t - 17t0)
22 (tvtO)

. (O§"IRL,[0) =

q

el (t) = arccosh[

where the label "L" refers to a local interpolating field. r@imulation we have chosess = 4.0
and we have considered a basis of 4 operatorsmwith{0, 2,10,30}. We show in Figure 2 plateaus
of D andD’ masses and decay constants for one of the ETMC ensemblesritfenpa combined
chiral and continuum extrapolation Dba/me and fDa/fDq with the formula

alatt Aﬁ‘

a 2
1+Bm+cy<aﬁ_3g> ] (3.2)

The fits quality is illustrated in Figure 3. Our results read:
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mp,/mp, | o,/ fo,
tmQCD (N =2) 1.55(6) | 0.69(5)

Wilson-Clover (N=2) | 1.48(7) | 0.77(9)

Wilson-Clover (N=0) | 1.41(9) | 0.67(12)

Table 3: Comparison of results obtainedat- 0.065 fm with different quark regularisations and numbers
of dynamical flavours.

=1.53(7), E =0.59(11), o _ 1.55(9), o = 0.57(16). (3.3)
mDs Ds Mp fo

There is a~ 20 discrepancy with the experimental estim% = 1.36. To check whether it could
arise because Twisted-mass QCD breaks parity at finitedagpacing, inducing a mixing between
radial excitations and states of opposite parity that wadtbe properly taken into account in
our work, we perform a computation with Wilson-Clover feams at a lattice spacing correspond-
ing to ag_405 (cf. Tables 1 and 2). Another source of systematics has aiqatysrigin: with

N¢ = 2 dymamical light quarks, decay channels can open up ansitimrsD’ — D*1, D’ — D{,

D5 — D*K andDj — DgK are kinematically allowed in large volumes, making the gsialin prin-
ciple very tricky. As it is not the case in the quenched apination, we checked our findings
in that framework as well. We observe in Table 3 a qualitatjged agreement between our esti-
mates ofmp; /mp, and fp, / fp, at finite lattice spacing. Moreover we extrapolate to thesptat
point fp,/mp, with the formula (3.2) and,/mp,/mp[fo,/ fol/[fk / fr] using Heavy Meson Chiral
Perturbation Theory at LOX(= 0) and NLO K = 1) [14], deducingfp/ f:

2
/Mo, /mp[fo,/ fol/[fk / fr] = A 1+x nﬁmmm@+&ﬁ+c<—3—> . (3.9
( ) ag=39
with g = 0.53(3)(3) [15],
fo,/Mp, = 0.1281(11), fp /fp=1.23(1)(1), fp/fr=156(3)(2), (3.5)

where the first error is statistical and the second erroesponds to the difference between LO and
NLO chiral fits of \/mp,/mp[fp./ fo]/[fk / fr]. Finally we obtainfp, = 252(3) MeV, in excellent
agreement with a very recent measurement at Bffé:= 255+ 4.24+5.1 MeV [16].

4. Back to phenomenology and conclusion

We have now everything we need to answer our question at tierbeg. Witha, /a; = 0.368,
Tgo/Tg- = 1.0797), f8-P(0) = 0.64(2) and f§~(m3) = 0.29(4) [17], we find

%(B —-Dm) 1p 0.14(4) 1> #(B°—D"*m) BD o 2

/ 2 .
Using the experimental valufe- = 1.36, we fmd‘%ﬂ—jrr)} (1.65+0.13) x ‘fJE:—»D (o)‘ 2 in

other words, the dependence mp: of that ratio is small. Setting®>~? = 0.4 as found by Ebert
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et al[9], my /mp = 1.36 and the branching ratie?(B° — D57 ) measured aB factories [18],
[19], we obtain
%’(B_O — D)
<%)(BO — D§+Tl_)

#(B~ — DOm)
#(B- — DO )

= 1.6(3),

= 1.4(3). (4.1)

In conclusion, iff8~0" is large, as claimed by many authors, the measuremept(8f— D'm)
should be as feasible in present experimentsf48 — D;m) was atB factories. Thus, it reveals
beneficial to studyB — D’ non leptonic decays to address the composition of finalstatd —
D**lv semileptonic decays. A natural extension of our work is tosider the procesB — Dt
and compute on the lattick;.
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