
P
o
S
(
L
A
T
T
I
C
E

2
0
1
3
)
4
1
8

Code development (not only) for NSPT

Michele Brambilla∗,a, Dirk Hesse and Francesco Di Renzo

Università di Parma and INFN, Viale Usberti 7/A, I-43124 Parma, Italy
aE-mail: michele.brambilla@pr.infn.it,

In recent years NSPT was proven capable of providing high order perturbative results more easily

than traditional approaches. The technique is based on numerical integration of the equations of

stochastic quantization; one thus gets perturbative results in a way which is alternative to standard

Feynman diagrams. One actually needs to solve a hierarchy of stochastic differential equations,

the solution being obtained as a perturbative expansion. The key point for an efficient solution is

a framework in which everything is computed order by order. We present “parmalgt”, a general

C++ framework mainly intended for NSPT computations that we are currently developing.

31st International Symposium on Lattice Field Theory - LATTICE 2013

July 29 - August 3, 2013

Mainz, Germany

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:michele.brambilla@pr.infn.it

P
o
S
(
L
A
T
T
I
C
E

2
0
1
3
)
4
1
8

Code development (not only) for NSPT Michele Brambilla

1. Motivations

Trying to modify a high performance lattice QCD code can be a hard task. One usually has

to go through a hundreds of files usually written with the aim of a high performance and tuned for

a few, particular machines, with the side effect of a loss of readability. Things can be even worse

if one has to define one’s own data type: function calls contain explicit reference to well defined

types and cannot be modified easily. Moreover the parallelization strategy usually deeply depends

on the geometry of the system one simulates and on the routines of the program. A usual choice is

to embed function calls in charge to perform communications in the computational body.

As a result many collaborations develop their own codes, in particular if these are dedicated to some

specific application. This is the case of the Parma group and Numerical Stochastic Perturbation

Theory.

2. NSPT in brief

In 1981 Parisi and Wu introduced Stochastic Quantization [1] as an alternative to canonical

quantization. In this approach one first introduces a new degree of freedom (stochastic time), then

forces the system to evolve according to the Langevin dynamic

∂φ(x, t)

∂ t
=−

δS[φ]

δφ(x, t)
+η(x, t) (2.1)

and finally solves the Langevin equation given some initial condition at t = t0. In (2.1) η(x, t) is a

gaussian noise s.t.

〈η(x, t)〉= 0 〈η(x, t)η(x′, t ′)〉= 2δ (x− x′)δ (t − t ′).

In the case of a gauge theory the Langevin equation (2.1) reads

∂

∂ t
U(t) = [−i∇S[U]− iη]U(t), (2.2)

where ∇ = T a∇a is the Lie derivative, defined by f (eiαaT a

U) = f (U)+αa∇a f (U)+

Considering the lattice regularization of gauge theories and expanding the links in a power se-

ries Uµ =∑n=0 β−n/2U
(n)
µ Di Renzo, Marchesini and Onofri proposed Numerical Stochastic Pertur-

bation Theory [2]. In this approach one plugs the links’ expansions in the Langevin equation (2.2)

obtaining a hierarchy of equations to be truncated at a given order. The differential equations can

be cast into integral ones and finally integrated numerically on a computer.

The main idea for the numerical approach is to get rid of the perturbative structure of compu-

tations defining perturbative operations, e.g.

A∗B =
{

(A∗B)(0),β−1/2(A∗B)(1),β−1(A∗B)(2), . . .
}

,

(A∗B)(ord) =
ord

∑
i=0

A(i)B(ord−i).

2

P
o
S
(
L
A
T
T
I
C
E

2
0
1
3
)
4
1
8

Code development (not only) for NSPT Michele Brambilla

3. parmalgt

Because of its peculiarity NSPT has a longstanding story of dedicated programs. The first

implementation was written in the TAO language for the apeNEXT machine. In this version lattice

size and parallelization strategy were deeply coded in the program.

In order to run simulations on different machines the program was completely rewritten under the

name of Cpp2 (also known as “Enzo’s code”). Cpp2 was written, as the name suggest, in C++

whose features like classes and templates allow a broad data type, lattice size and perturbative or-

der flexibility. Parallelization was implemented along one dimension via MPI. Drawback of the

highly templated structure is that the program turns out to be difficult to read and modify.

In order to overcome some of the limitations of Cpp2 we wrote an entirely new program: PRlgt.

PRlgt aims to be a modular C++ program in which lattice structure, data type and algorithms are

not deeply connected. This allows to modify some aspects of the code without affecting the rest.

In principle it supports any number of physical dimensions, however the user has to encode neigh-

borhood information between the points. Being developed for modern commodity hardware it is

designed for multithreading, though multiprocess is not supported.

When we set out to implement the Schrödinger functional [3] in the framework of NSPT we re-

alized some of the limitations of PRlgt, in particular perturbative expansion around a nontrivial

vacuum requires deep refactoring. Trying to overcome these limitations and exploiting the new

standard of C++ (namely c++11) a new simulation environment, parmalgt, has been developed.

It is not only a LQCD environment, but a general framework where some “objects” live on a D-

dimensional lattice.

4. Structure of the code

parmalgt pushes forward some of the aspects we learned from previous implementations in

order to obtain most of the benefits. It consists of three main layers:

• a low lying mathematical layer, where basic types and related operations are defined;

• the lattice structure, consisting of the space-time geometry and the abstract concept of a field;

• the algorithms which define the update of the fields and the measurements.

Such a structure allows the data flexibility we are interested in: one starts by defining basic objects

like vector<N> and matrices SU<N> with arbitrary N. Templates and specialization allow to

reduce the number of defined objects while ensuring high flexibility. Objects beyond basic types

are built using the latter as building blocks: this is the case of perturbative expansions. By means of

operator overloading the same operation between different data types is implemented by the same

mathematical symbol and resolved by the compiler.

The lattice structure is responsible for the space-time dimensionality DIM, the extent of each dimen-

sion and the neighborhood relations. Concepts of Point<DIM> and Direction<DIM> permit

to easily reach any neighbor or position in the lattice. Neighborhood relations are recursively com-

puted at compile time by specifying how to sweep every direction. In each direction one can have

periodicity (PeriodicPolicy), avoid boundaries (BulkPolicy) or consider a single slice

3

P
o
S
(
L
A
T
T
I
C
E

2
0
1
3
)
4
1
8

Code development (not only) for NSPT Michele Brambilla

(ConstPolicy). The basic object required by any simulation is a LocalField<data_t,

DIM>, which is an abstract container of some kind of data, capable to apply some function called

kernel on the data it contains.

The algorithmic part of the code is based on the action of the kernel on a single object. Kernels are

aware of the type of data on which they act and capable to access all the relevant information when

invoked by a field. They can consists of update actions on the object or measurements.

5. Parallelization

The parallelization of the code allows the user to choose among shared memory (multithread-

ing via OpenMP), distributed memory (via MPI) or a combination of the two.

When implementing multithreading one has to take care of data races. Let us consider the case of

a next-neighbors action (figure 1(a)). While a thread updates the blue link the red ones must stay

the same. A viable approach is the following: for each kernel one generates once and for all the

list of points on which to operate, in this case using a checkerboard scheme (figure 1(b)). First

of all the threads update the links lying on red points, and only when this update finishes threads

start updating the blue ones. This scheme requires only one synchronization for each update of the

whole lattice. The approach should be modified when considering updates that require links be-

(a) (b)

Figure 1: In case of a multithread next-neighbors update a simple checkerboard scheme is implemented.

yond next-neighbor (e.g. improved actions, figure 2(a)). In this case the lattice is first divided into

“blocks” and subsequently the checkerboard is implemented on the blocks. Referring to figure 2(b)

one fills different lists with all the blue points “a”, then blue “b” and so on, then switching to red

blocks.

(a)

a a

a a

b b

b b

(b)

Figure 2: If the update requires links beyond next-neighbor the multithread uses a blocked-checkerboard

scheme.

Multiprocess parallelization is still experimental. In this approach a Communicator<Field_t>

is in charge of all tasks required for communications. The lattice can be considered to be composed

4

P
o
S
(
L
A
T
T
I
C
E

2
0
1
3
)
4
1
8

Code development (not only) for NSPT Michele Brambilla

of three regions (figure 3): a bulk (white) not dealing with communications, inner boundaries (red)

to be updated and sent to neighbors and outer boundaries (blue) received from other processes

not to be updated from the current process. The Communicator contains a buffer for each re-

gion to be sent or received: the first is updated by the current process, copied into the buffer and

sent; the latter is received and copied. Operations of send, receive and copy are performed by the

Communicator itself. An object called Reduce<T> takes care of gathering the results of mea-

surements that are performed by each process individually and need to be combined.

Communicator

Send buffer

Recv buffer

Figure 3: The Communicator takes care of communications, by copying data into dedicated areas and

performs send/receive operations.

Scaling tests of the multithread version have been performed for different architectures and dif-

ferent lattice sizes. Figure 4(a) shows the speedup on a dual Intel Westmere X5680@3.33 GHz

processor (6 physical cores per processor). Running with 8 threads on a 44 lattice gives a speedup

of roughly 5.5 (70% theoretical peak), while the speedup on a 164 lattice goes up to 7.3 (91% the-

oretical peak). Figure 4(b) shows the case of a 244 lattice on a dual Intel Sandybridge@2.5 GHz

(each processor has 8 physical cores). In this case the speedup using 16 threads is 13.5, correspond-

ing to 84% theoretical. On a Intel MIC we are able to reach a limit case of 240 threads on a 244

lattice (figure 4(c)). In the latter it is cumbersome to define a proper “expected” value because of

the hyperthreading feature of the machine: the black line in figure 4(c) corresponds to the number

of physical core in use.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 1 2 3 4 5 6 7 8

s
p
e
e
d
u
p

num threads

L 4
L 6
L 8

L 12
L 16

expected

(a) Westmere X5680@3.33 GHz

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2 4 6 8 10 12 14 16 18

s
p
e
e
d
u
p

num threads

L 24
expected

(b) Sandybridge @2.5 GHz

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250

s
p
e
e
d
u
p

num threads

L 24
expected

(c) Intel MIC 5110P@1.053 GHz

Figure 4: Multithread speedup on different processor. Points represent measurement and black line ideal

scaling (in the case of MIC it represents number of physical cores involved).

6. Applications

Even though still in development, parmalgt is capable of some applications.

Schrödinger functional is defined by imposing periodic boundary conditions in spatial direc-

tions and Dirichlet boundary conditions in time. In in SU(3) YangMills theory these conditions

5

P
o
S
(
L
A
T
T
I
C
E

2
0
1
3
)
4
1
8

Code development (not only) for NSPT Michele Brambilla

read

Uk(x)
∣

∣

∣

x0=0
= eC(x) Uk(x)

∣

∣

∣

x0=T
= eC′(x).

Among the different choices for C and C′ one can consider constant diagonal matrices as speci-

fied in [4]; this choice induce a nontrivial background field. In perturbation theory the following

decomposition holds:

Uµ(x) = eg0qµ (x)Vµ(x)

Considering the NSPT approach we are dealing with a perturbative expansion of gluons around

a nontrivial background, in this case an AbelianBgf. Such an expansion can be achieved by

simply setting the proper background:

typedef bgf :: AbelianBgf Bgf_t; // background field

typedef BGptSU3<Bgf_t, ORD> ptSU3; // group variables

typedef BGptGluon<Bgf_t, ORD, DIM> ptGluon; // gluon

typedef fields :: LocalField<ptGluon, DIM> GluonField;

Some preliminary results using this formulation have been presented in [5].

Another interesting application for which parmalgt is already providing results is the pertur-

bative study of the Wilson flow [6], in particular the Wilson flow coupling on the lattice, defined

by

ḡ2
GF(L) = N

−1〈t2E(t,T/2)〉|t=c2L2/8

= N
−1

{

E
(0)g2

0 +E
(1)g4

0 +E
(2)g6

0 + . . .
}

where t > 0 is the flow time, E(t,T/2) the energy density and N a normalization s.t. ḡ2
GF(L) =

g2
0 +O

(

g4
0

)

. A comparison with the analytical results [7] has been presented in [8] together with

preliminary one and two loop computations.

7. Conclusion and outlook

In this proceeding we present a new simulation environment that aims to be flexible and gen-

eral in order to allow non standard simulations on the lattice such as NSPT. This target is achieved

by means of a layered structure and usage of templates.

So far some features have already been implemented: periodic and Dirichlet boundary con-

ditions, expansions around trivial or Abelian background and Euler and 2nd order Runge-Kutta

integrators for the Langevin and flow equations. Among different measurements it is worth to men-

tion the Schrödinger functional and Wilson flow couplings. Multithread parallelization is properly

working and multiprocess is under development. Further ongoing developments are the inclusion

of fermions and improved gauge actions.

Acknowledgments

This talk was a part of a coding session sponsored partially by the PRACE-2IP project, as part

of the “Community Codes Development” Work Package 8. PRACE-2IP is a 7th Framework EU

6

P
o
S
(
L
A
T
T
I
C
E

2
0
1
3
)
4
1
8

Code development (not only) for NSPT Michele Brambilla

funded project (http://www.prace-ri.eu, grant agreement number: RI-283493).

This work received funding from the Research Executive Agency (REA) of the European Union

under Grant Agreement number PITN-GA-2009-238353 (ITN STRONGnet) and in parts by INFN

under i.s. MI11 (now QCDLAT).

M. Brambilla has been supported by MIUR (Italy) through the INFN SUMA

References

[1] G. Parisi and Y. s. Wu, “Perturbation Theory Without Gauge Fixing,” Sci. Sin. 24, 483 (1981).

[2] F. Di Renzo, G. Marchesini, P. Marenzoni and E. Onofri, “Lattice perturbation theory by Langevin

dynamics,” hep-lat/9308006.

[3] M. Luscher, R. Narayanan, P. Weisz and U. Wolff, “The Schrödinger functional: A Renormalizable

probe for nonAbelian gauge theories,” Nucl. Phys. B 384 (1992) 168 [hep-lat/9207009].

[4] M. Luscher, R. Sommer, P. Weisz and U. Wolff, “A Precise determination of the running coupling in

the SU(3) Yang-Mills theory,” Nucl. Phys. B 413 (1994) 481 [hep-lat/9309005].

[5] D. Hesse, M. Brambilla, M. Dalla Brida, F. Di Renzo and S. Sint, “Numerical Stochastic Perturbation

Theory in the Schrödinger Functional,” PoS LATTICE 2013 (2013).

[6] M. Luscher, “Trivializing maps, the Wilson flow and the HMC algorithm,” Commun. Math. Phys. 293

(2010) 899 [arXiv:0907.5491 [hep-lat]].

[7] P. Fritzsch and A. Ramos, “The gradient flow coupling in the Schrödinger Functional,” JHEP 1310

(2013) 008 [arXiv:1301.4388 [hep-lat]].

[8] M. Dalla Brida and D. Hesse, “Numerical Stochastic Perturbation Theory and the Gradient Flow,”

PoS LATTICE 2013 (2013) 326.

7

