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PLQCD is a stand–alone software library developed under PRACE for lattice QCD. It pro-
vides an implementation of the Dirac operator for Wilson type fermions and few efficient lin-
ear solvers. The library is optimized for multi-core machines using a hybrid parallelization with
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Dirac operator for efficient computation of the quark propagator. In this contribution, a descrip-
tion of the PLQCD library is given together with some benchmark results.
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1. Introduction

Computer hardware for commodity clusters as well as supercomputers has evolved tremen-
dously in the last few years. Nowadays a typical compute node has between 16 and 64 cores
and possibly an accelerator such as a Graphics Processing Unit (GPU) or lately an Intel Many
Integrated Core (MIC) card. This trend of packing many low-powered but massively parallel pro-
cessing units is expected to continue as supercomputing technology pursues the Exascale regime.
The current technology trends indicate that bandwidth to main memory will continue to lag behind
computational power, which requires a rethinking of the design of lattice QCD codes such that they
can efficiently run on such architectures. Taking this into account, PRACE [1] allocated resources
for community code scaling activities in many computationally intensive areas including lattice
QCD. The work presented here was developed under PRACE focusing on scaling codes for multi-
core machines. The work we present deals with community codes, and more specifically on certain
computationally intensive kernels in these codes, in order to improve their scaling and performance
for multi-core architectures. We have carried out optimization work on the tmLQCD [2, 3] code
and have developed a new hybrid MPI/OpenMP library (PLQCD) with optimized implementations
of the Wilson Dirac kernel and a selected set of linear solvers. Our partners in this project have also
performed optimization work for the Molecular Dynamics integrators used in Hybrid Monte Carlo
codes, and also for Landau gauge fixing. This was done within the Chroma software suite [4] and
will not be discussed here (See [5] for more information). Many other community codes of course
exist but were not considered in this work (See [6] for an overview).

In what follows, we will first present the work carried out for the case of PLQCD, where we im-
plemented the Wilson Dirac operator and associated linear algebra functions using MPI+OpenMP.
In addition to using this hybrid approach for parallelism, we also implement additional optimiza-
tions such as overlapping communication and computation, using compiler intrinsics for vector-
ization as well as implementing the new Advanced Vector Instructions [7](AVX for Intel or QPX
for Blue/Gene Q) that became recently available in new generation of processors such as the Intel
Sandy-Bridge. The work done for the case of the tmLQCD package will then be presented, where
we implemented some new efficient linear solvers, in particular those based on deflation such as
the EigCG solver [8], for which we will give some benchmark results.

2. Dirac operator optimizations

A key component of the lattice Dirac operator is the hopping part given by Eq.2.1.

ψ(x) =
3

∑
µ=0

[Uµ(x)(1− γµ)φ(x+ êµ)+U†
µ(x− êµ)(1+ γµ)φ(x− êµ)], (2.1)

where, Uµ(x) is the gauge link matrix in the µ direction at site x, γµ are the Dirac matrices and
êµ is a unit vector in the µ direction. φ and ψ are the input and output spinors respectively.
Equation 2.1 can be re-written in terms of two auxiliary fields θ+

µ (x) = (1− γµ)φ(x) and θ−µ (x) =
U†

µ(x)(1+ γµ)φ(x) as

ψ(x) =
3

∑
µ=0

[Uµ(x)θ+
µ (x+ êµ)+θ

−
µ (x− êµ)]. (2.2)
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Because of the structure of the γ matrices, only the upper two spin components of θ±µ need to be
computed because the lower two spin components are related to the upper ones [9]. In the following
we describe some of the optimizations performed for the hopping matrix.

2.1 Hybrid parallelization with MPI and OpenMP

OpenMP provides a simple approach for multi-threading since it is implemented as compiler
directives. One can incrementally add multi-threading to the code and also use the same code
with multi-threading turned on and off. Since the main component in the hopping matrix (Dirac
operator) is a large “for loop” over lattice sites, it is natural to use the for-loop parallel construct
of openMP. The performance of the hybrid code is then tested against the pure MPI version. We
perform a weak scaling test by fixing the local volume per core (or thread) and increase the number
of MPI processes. The test was done on the Hopper machine at NERSC which is a Cray XE6[10].
Each compute node has 2 twelve-core AMD ’MagnyCours’ at 2.1-GHz such that each 6 cores share
the same cache. We find performance for the Hybrid version is maximum when assigning at most 6
threads per MPI process such that these 6 OMP threads share the same L3 cache. In Fig. 1 we show
the performance of the pure MPI and the MPI+openMP with 6 threads per MPI process for a total
number of cores up to 49,152 cores. From these results we first notice that using OpenMP leads
to a slight degradation in performance as compared to the pure MPI case. However, as we see in
the case with local volume of 124, the hybrid approach performs better as we go to a large number
of cores. Similar behavior has been also observed for other codes from different computational
sciences (see the case studies on Hopper [11]).

Figure 1: Weak scaling test for the hopping matrix on a Cray XE6 machine with local lattice volume per
core 84(left) and 124(right).

2.2 Overlapping communication with computation

Typically in lattice codes one first computes the auxiliary half-spinor fields θ±µ as given in
Equation (2.2) and then communicates their values on the boundaries between neighboring pro-
cesses in the +µ and−µ directions. In a blocking communication scheme, computation halts until
communication of the boundaries completes. An alternative approach is to overlap communica-
tions with computations by dividing the lattice sites into bulk sites, for which nearest neighbors are
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available locally, and boundary sites, for which the nearest neighbors are located on neighboring
processes, and therefore can only be operated upon after communication. The order of operations
for computing the result ψ is then done as follows:

• Compute θ+
µ and begin communicating them to the neighboring MPI process in the −µ

direction.

• Compute θ−µ and begin communicating them to the neighboring MPI process in the +µ

direction.

• Compute the result ψ(x) on the bulk sites while the neighbors are being communicated.

• Wait for the communications in the −µ directions to finish, then compute the contributions
∑

3
µ=0[Uµ(x)θ+

µ (x+ êµ)] to the result on the boundary sites.

• Wait for the communications in the +µ directions to finish, then compute the contributions
∑

3
µ=0[θ

−
µ (x− êµ)] on the boundary sites.

Communication is done using non-blocking MPI functions MPI_Isend, MPI_Irecv and MPI_Wait.
A possible drawback of this approach is that one will access ψ(x) and Uµ(x) in an unordered fash-
ion different from the order it is stored in memory. This, however, can be circumvented partially by
using hints in the code for prefetching. We have tested the effect of prefetching in case of sequen-
tial and random access of spinor and link fields. The test was done using a separate benchmark
kernel code which isolates the link-spinor multiplication. As can be seen in Fig. 3, prefetching
becomes important for a large number of sites, i.e. when data (spinors and links) can not fit in the
cache memory, which is a typical situation for lattice calculations. It is also noted that accessing
the sites randomly reduces the performance, as would be expected. In this case one can improve
the situation by defining a pointer array, e.g. for the spinors ψ ′(i) = &ψ(x[i]) where x[i] is the
site to be accessed at step i in the loop such as we show in pseudo-code in Fig. 2. These pointers
can be defined a priori. This improves the predictive ability of the hardware as is shown in Fig. 3
where we compare the different prefetching and addressing schemes.

Sequential access
for(i=0; i< N; i++)

ψ(i) = U(i)φ(i)

Random access
for(i=0; i< N; i++)

ψ(x[i]) = U(x[i])φ(x[i])

Random access with pointers
/* prepare pointer arrays */

for(i=0; i< N; i++)

ψ ′(i) = &ψ(x[i])

U′(i) = &U(x[i])

φ ′(i) = &φ(x[i])

for(i=0; i< N; i++)

∗ψ ′(i) = ∗U′(i)∗φ ′(i)

Figure 2: Pseudo-code describing the site access for the case of simple sequential access (left), random
access using an index array x[i] (centre) and random access using precalculated pointer arrays (right).
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Figure 3: Effect of prefetching for the cases of sequential (left) and random access (centre) of lattice sites.
In the right panel we compare the effect of having precalculated pointer arrays for the case of random access.

2.3 Vectorization using AVX instructions

Lattice QCD codes benefit from the vectorization capabilities of modern processors starting
from SSE to SSE3. In SSE3, we have 16 vector registers known as XMM registers, each 128-bit
wide thus able to store either 2 double precision floating point variables or 4 single precision. The
AVX extensions are extensions to the x86 instruction set implemented both by Intel and AMD.
These first appeared in 2011 in the Intel SandyBridge processors and later by AMD in their Bull-
dozer processor. The 16 XMM registers of SSE3 are now 256-bit wide and known as YMM
registers. AVX-capable floating point units are able to perform on 4 double precision floating point
numbers or 8 single precision. Implementing these extensions in the vectorized parts of lattice
codes has the potential of providing a gain of up to a factor 2 in an ideal situation, although in prac-
tice this depends on the layout of lattice data. We provided an implementation of these extensions
using inline intrinsics. In this implementation a single SU(3) matrix multiplies two SU(3) vectors
simultaneously. A gain of about a factor of 1.5 is achieved for the hopping matrix in the tmLQCD
code in double precision as shown in Fig.(4). For illustration, a code snippet for multiplying two
complex numbers by two complex numbers using AVX is shown in Fig.(5).

3. EigCG solver for Twisted-Mass fermions

Twisted-Mass fermions offer the advantage of automatic O(a) improvement when tuned to
maximal twist [12]. Within this development work we have added an incremental deflation algo-
rithm, known as EigCG, to the tmLQCD package. Numerical tests showed a considerable speed-up
of the solution of the linear systems on the largest volumes simulated by the European Twisted Mass
Collaboration (ETMC). For illustration, we show in Fig.(6) the time to solution with EigCG on a
Twisted-Mass configuration with 2+1+1 dynamical flavors with lattice size 483× 96 at β = 2.1,
and pion mass ≈ 230 MeV. In this case the total number of eigenvectors deflated was 300 which
was built incrementally by computing 10 eigenvectors during the solution of the first 30 right-hand
sides using a search subspace of size 60. All systems are solved in double precision to relative
tolerance of 10−8.
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Figure 4: Comparing the performance of the hop-
ping matrix of tmLQCD using SSE3 and AVX in
double precision on an Intel SandyBridge processor.

#include <immintrin.h>

/* t0: a+b*I, e+f*I and t1: c+d*I, g+h*I

* return: (ac-bd) + (ad+bc)*I,

* (eg-fh) + (eh+fg)*I */

static inline __m256d

complex_mul_regs_256(__m256d t0, __m256d t1)

{
__m256d t2;

t2 = t1;

t1 = _mm256_unpacklo_pd(t1,t1);

t2 = _mm256_unpackhi_pd(t2,t2);

t1 = _mm256_mul_pd(t1, t0);

t2 = _mm256_mul_pd(t2, t0);

t2 = _mm256_shuffle_pd(t2, t2, 5);

t1 = _mm256_addsub_pd(t1, t2);

return t1;

}

Figure 5: Multiplying two complex numbers by
two complex number of type double using AVX in-
structions.

Figure 6: Solution time per process for the first 35 right-hand sides using Incremental EigCG as compared
to CG on a Twisted-Mass configuration with lattice size 483×96 at β = 2.1, and pion mass ≈ 230 MeV.

4. Conclusions and Summary

We have carried out development effort for a few selected kernels used in lattice QCD. The
first of these efforts included the development of a hybrid MPI/OpenMP library which includes
parallelized kernels for the Wilson Dirac operator and few associated solvers. A number of paral-
lelization strategies have been investigated, such as for overlapping communication with computa-
tions. The code has been shown to scale fairly well on the Cray XE6. In terms of single process
performance, we carried out initial vectorization efforts for AVX where we see an improvement of
∼1.5 compared to the ideal 2. In addition we have investigated several data-ordering and associated
prefetching strategies.

For the case of tmLQCD, the main software code of the ETMC collaboration, we have imple-
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mented an efficient linear solver which incrementally deflated the twisted-mass Dirac operator to
give a speed-up of about 3 times when enough right-hand-sides are required. This is already in use
in production projects, such as in Refs. [14] and [13].

All codes are publicly available. PLQCD is available through the HPCFORGE website at the
Swiss National Supercomputing Centre (CSCS) where more information is available within the
code documentation. Our EigCG implementation in tmLQCD is available via git-hub.
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