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Different versions of improved staggered fermions can be used as valence quarks to reduce dis-
cretization effects in lattice QCD calculations while increasing statistics on existing staggered
gauge ensembles. Such mixed-action simulations can be used to improve determinations of light
quark masses, Gasser-Leutwyler couplings, decay constants, and other parameters relevant to
particle phenomenology. We recall the generalization of ordinary, unmixed staggered chiral per-
turbation theory required to describe data from lattice calculations with a mixed action such as
with HYP staggered valence quarks and asqtad sea quarks. We calculate the next-to-leading order
loop diagrams contributing to the masses and decay constants of the flavored pseudo-Goldstone
bosons of all tastes and here report results for the decay constants and valence-valence masses.
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1. Introduction

Staggered chiral perturbation theory (SChPT) has been used extensively to control extrapola-
tions from unphysical light-quark simulation masses to physical masses and to remove dominant
light quark and gluon discretization effects [1]. Mixed-action ChPT was developed for simulations
performed with Ginsparg-Wilson valence quarks and (less computationally expensive) Wilson sea
quarks [2]. The formalism for staggered sea quarks and Ginsparg-Wilson valence quarks was devel-
oped in Ref. [3]. Mixed-action ChPT for differently improved staggered fermions was introduced
for calculations of the K0−K0 bag parameter [4] and the K → π`ν vector form factor [5]. As
a by-product, the pseudo-Goldstone boson (PGB) masses and propagators were calculated at tree
level in mixed-action SChPT. While contributions to overall errors were very small, some of the
low-energy couplings (LECs) of mixed-action SChPT were not well determined by the data [4, 5].

Here we present a calculation of the next-to-leading order (NLO) loop corrections to the
masses and decay constants of the flavor-charged PGBs in all taste irreps. Analyses of correspond-
ing spectrum data may improve our knowledge of LECs that are poorly determined by existing
simulations. Our results can also be used to improve determinations of the light quark masses,
Gasser-Leutwyler couplings, and pion and kaon decay constants. Data for such analyses could be
generated with, e.g., asqtad sea quarks and valence HYP, or with HISQ sea quarks and improved
staggered valence quarks that would allow for simulating relativistic bottom quarks at lattice spac-
ings & 0.03 fm. Mixed-action SChPT results could facilitate future calculations of quantities such
as |Vcb| and the K→ ππ amplitudes.

2. Mixed-action staggered chiral perturbation theory

Mixed-action theories are generalizations of partially quenched theories with different valence
and sea quark actions. The symmetries relating valence and sea quarks are broken, but with differ-
ently improved versions of the same action, the symmetries of the valence (sea) sector are the same
as in the unmixed theory. As for ordinary, unmixed SChPT, mixed-action SChPT is constructed
in two steps. First one builds the Symanzik effective theory (SET) for the (mixed-action) lattice
theory. One then maps the operators of the SET into those of ChPT [6].

2.1 The leading order Lagrangian

Mapping the SET Lagrangian into the chiral theory through NLO, we have

Seff = SQCD +a2S6 + . . .−→LSChPT = LLO,ChPT +a2V + . . . . (2.1)

Here SQCD (LLO,ChPT) has the form of the QCD action (the leading order Lagrangian of continuum
ChPT), but respects the doubler symmetry, taste SU(4). As in continuum ChPT, the Lagrangian
LLO,ChPT contains kinetic energy, mass, and anomaly terms. The operators in S6 break the con-
tinuum symmetries, including those relating valence and sea quarks, to those of the mixed-action
lattice theory. A subset of four-fermion operators in S6 respects Γ4oSO(4) ⊂ SU(4). They map
to the potential V and can be obtained from those of the unmixed SET by introducing projection
operators Pv,σ onto the valence and sea sectors and allowing the LECs to differ in the valence and
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sea sectors. Generically, we have

c ψ̄(γs⊗ξt)ψ ψ̄(γs⊗ξt)ψ −→ cvv ψ̄(γs⊗ξt)Pvψ ψ̄(γs⊗ξt)Pvψ +(v→ σ) (2.2)

+2cvσ ψ̄(γs⊗ξt)Pvψ ψ̄(γs⊗ξt)Pσ ψ

where γs (ξt) is a spin (taste) matrix. To construct the potential V , the projection operators are
conveniently included in spurions. The resulting potential is V = U +U ′−CmixTr(τ3Στ3Σ†),
where U (U ′) contains single-(double-)trace operators that are direct generalizations of those in
unmixed SChPT, and the last term is a taste-singlet potential new in the mixed-action theory, with
τ3 ≡ Pσ −Pv. The operators in U (′) have independent LECs for the valence-valence, sea-sea, and
valence-sea sectors. For example,

C1Tr(ξ5Σξ5Σ
†)−→Cvv

1 Tr(ξ5PvΣξ5PvΣ
†)+(v→ σ)+ Cvσ

1 [Tr(ξ5PvΣξ5Pσ Σ
†)+ p.c.] . (2.3)

where p.c. means parity conjugate. For the unmixed case, Cvv
1 = Cσσ

1 = Cvσ
1 = C1, Cmix = 0, and

the potential reduces to that of ordinary SChPT. The full expressions for the potentials U (′) are
somewhat lengthy, and we defer writing them down [7].

2.2 Tree-level propagators and flavored PGB masses

The potential V contributes to the tree-level masses of the PGBs, which fall into irreps of
Γ4oSO(4). For a taste t PGB φ t

xy composed of quarks with flavors x,y, x 6= y,

m2
xy, t = µ(mx +my)+a2

∆
xy
F , t ∈ F ∈ {P,A,T,V, I} , (2.4)

where F labels the taste Γ4oSO(4) irreps (pseudoscalar, axial, tensor, vector, or scalar), and µ is
the condensate parameter. ∆

xy
F is the tree-level mass splitting, which depends on the LECs in U

and Cmix, as well as the sector (valence or sea) of the flavors x,y. We have

∆
vv
a =

8
f 2 ∑

b6=I
Cvv

b (1−θ
ab

θ
b5), ∆

σσ
a =

8
f 2 ∑

b6=I
Cσσ

b (1−θ
ab

θ
b5) (2.5)

∆
vσ
a =

16Cmix

f 2 +
8
f 2 ∑

b6=I

[
1
2(C

vv
b +Cσσ

b )−Cvσ

b θ
ab

θ
b5
]
, (2.6)

where the splitting is ∆
vv(σσ)
a if both quarks are valence (sea) quarks and ∆vσ

a otherwise; sub(super)scripts
a,b are taste indices labeling the generators of the fundamental irrep of U(4); and θ ab = +1(−1)
if the generators for a and b (anti)commute. The LECs Cvv,σσ ,vσ

b come from the potential U and
are defined in analogy with the unmixed case in Ref. [11]. The residual chiral symmetry in the
valence-valence sector, as for the unmixed theory (equivalently, the sea-sea sector), implies F = P
particles are Goldstone bosons for a 6= 0, mq = 0, and therefore ∆vv

P = 0. The same is not true for
the taste pseudoscalar, valence-sea PGBs, and generically, ∆vσ

P 6= 0.
In the flavor-neutral sector, x = y, the PGBs mix in the taste singlet, vector, and axial irreps.

The Lagrangian mixing terms (hairpin terms) are

1
2 δ φ

I
iiφ

I
j j +

1
2 δ

vv
V φ

µ

ii
φ

µ

j j
+ 1

2 δ
σσ
V φ

µ

ii φ
µ

j j +δ
vσ
V φ

µ

ii
φ

µ

j j +(V → A, µ → µ5) , (2.7)
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where i, j are flavor indices; µ (µ5) is a taste index in the vector (axial) irrep; and we use an
overbar (underbar) to restrict summation to the valence (sea) sector. The δ -term comes from the
anomaly contribution. In continuum ChPT, taking δ → ∞ at the end of the calculation decouples
the η ′ [8]. In SChPT, taking δ → ∞ decouples the η ′I . The flavor-singlets in other taste irreps are
PGBs and do not decouple [9]. The δ

vv,σσ ,vσ

V,A -terms are lattice artifacts from the potential a2U ′,
and the couplings δ

vv,σσ ,vσ

V,A depend linearly on its LECs.
Although the mass splittings and hairpin couplings are different in the three sectors, we find

the tree-level propagator can be written in the same form as in the unmixed case. We have

Gab
i j,kl(p2) = δ

ab

(
δilδ jk

p2 +µ(mi +m j)+a2∆
i j
a
+δi jδkl Da

il

)
, (2.8)

where the disconnected propagators vanish by definition in the pseudoscalar and tensor irreps, and
for the singlet, vector, and axial irreps,

Da
i j ≡

−1
IaJa


δ

i j
a

1+δ σσ
a σa

i j /∈ vv(
(δ vσ

a )2/δ σσ
a

1+δ σσ
a σa

+δ
vv
a − (δ vσ

a )2/δ
σσ
a

)
i j ∈ vv,

(2.9)

where δ
i j
I ≡ δ , Ia ≡ p2 + 2µmi + a2∆ii

a , Ja ≡ p2 + 2µm j + a2∆
j j
a , and we used the replica method

to quench the valence quarks [10] and root the sea quarks [9], so that

σa ≡∑
i

1
p2 +2µmi +a2∆σσ

a
= 1

4 ∑
i′

1
p2 +2µmi′+a2∆σσ

a
(2.10)

σa ≡∑
i

1
p2 +2µmi +a2∆vv

a
= 0 . (2.11)

The index i runs over the replica flavors which include the taste degrees of freedom. The index i′ is
summed over the physical sea quark flavors such as u,d,s.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 1: Quark flows for the NLO self-energy tadpoles (a-f) and current-vertex loops (g-i). The x
and y quarks are represented by blue and black lines, sea quarks are represented by red lines, and
current insertions are represented by crossed boxes.

4



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
4
3
6

Lattice 2013: Pions and kaons in mixed-action staggered ChPT Jon A. Bailey

3. NLO loop corrections to masses

For a taste t PGB φ t
xy composed of quarks with flavors x,y, x 6= y, the mass is defined in terms

of the self-energy, as in continuum ChPT. The NLO mass can be obtained by adding the NLO
self-energy to the tree-level value,

M2
xy, t = m2

xy, t +Σxy, t(−m2
xy, t) . (3.1)

Σxy, t consists of connected and disconnected tadpole loops with vertices from the LO Lagrangian
at O(φ 4) and analytic terms with vertices from the NLO Lagrangian at O(φ 2).

For a general Γ4oSO(4) irrep, the calculation of the valence-valence, flavored PGB self-
energies proceeds as for the unmixed case. Quark flows for the tadpoles are shown in graphs
(a-f) of Fig. 1. The kinetic energy, mass, and U vertices yield graphs of type (a), (c), and (d), and
the taste-singlet potential vertices (∝ Cmix) yield graphs of type (a),

a2Cmix

3 f 2(4π f )2 ∑
i′i′a

`(m2
i′i′,a

) , (3.2)

where i′ is summed over x,y; i′ is summed over the physical sea quarks; and `(m2)≡m2 ln(m2/Λ2)

is the chiral logarithm, with Λ the scale of dimensional regularization.
Vertices from U ′ yield graphs of type (b), (e), and (f). The hairpin vertex graphs are of type

(e) and (f). As in the unmixed case, they ((e) and (f)) can be combined and converted into the form
of (d). In the mixed-action case, the necessary identity is

δ vv
a

p2 +2µmx +a2∆vv
a
+

δ vσ
a

4 ∑
i′

Da
xi′ =−(p2 +2µmy +a2

∆
vv
a )Da

xy, a ∈V,A, (3.3)

where x,y are valence quarks. This relation follows from Eq. (2.9). Graphs of type (b) come from
vertices ∝ ωvv

V,A; they have the same form as those in the unmixed case [11].
Adding the graphs and evaluating the result at p2 =−m2

xy, t =−µ(mx +my)−a2∆vv
t , we have

the NLO, one-loop contributions to the self-energies of the valence-valence, flavored PGBs,

−Σ
NLO loop
xy, t (−m2

xy, t) =
a2

48(4π f )2 ∑
a

[(
∆

mix
at −∆

vv
t −∆

vσ
a +

16Cmix

f 2

)
∑
i′i′

`(m2
i′i′,a

) (3.4)

+
3
2

(
∑

b∈V,A
ω

vv
b τabtτabt(1+θ

ab)

)
`(m2

xy,a)

]
(3.5)

+
1

12(4π f )2 ∑
a

[
a2 (∆vv

at −∆
vv
t −∆

vv
a )
∫ d4q

π2 (Da
xx +Da

yy) (3.6)

+
∫ d4q

π2

[(
2(1−θ

at)+ρ
at
)

q2 +
(

2(1+2θ
at)+ρ

at
)

m2
xy,5 (3.7)

+ 2a2
∆
′vv
at +a2

(
2θ

at
∆

vv
t +(2+ρ

at)∆vv
a

)]
Da

xy

]
, (3.8)
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where ρat ≡ −4(2+ θ at) unless a = I, when it vanishes, τabt ≡ Tr(T aT bT t) is a trace over (a
product of) generators of U(4), ωvv

b depends on the LECs of U ′, and

∆
vv
at ≡

8
f 2 ∑

b6=I
Cvv

b (5+3θ
ab

θ
bt −4θ

5b
θ

bt −4θ
ab

θ
b5) , (3.9)

∆
′vv
at ≡

8θ at

f 2 ∑
b6=I

Cvv
b (1+3θ

ab
θ

bt −2θ
5b

θ
bt −2θ

ab
θ

b5) , (3.10)

∆
mix
at ≡

8
f 2 ∑

b6=I

[
1
2(9Cvv

b +Cσσ

b )+Cvσ

b (3θ
ab

θ
bt −4θ

ab
θ

b5)−4Cvv
b θ

5b
θ

bt
]
. (3.11)

The form of Eqs. (3.4)-(3.8) is the same as that in ordinary SChPT [11]; the differences are in the
definition of the disconnected propagators and the LECs of the effective field theory.

The valence-valence, taste-pseudoscalar PGBs are true Goldstone bosons in the chiral limit,
mx,my→ 0, a 6= 0. Setting t = 5 in Eqs. (3.4) through (3.8) gives

−Σ
NLO loop
xy,5 (−m2

xy,5) =
µ(mx +my)

2(4π f )2 ∑
a

θ
a5
∫ d4q

π2 Da
xy , (3.12)

which is the generalization of the results of Ref. [9] to the mixed-action case. Only graphs of type
(d) contribute.

For the valence-sea, flavored PGB self-energies, the calculation proceeds similarly, but there is
no symmetry under x↔ y, and the taste pseudoscalars are not Goldstone bosons in the chiral limit.
Graphs of type (a) contribute chiral logarithms from valence-sea and sea-sea PGBs in the loop,
and graphs of type (b) enter with valence-sea PGBs in the loop. The elimination of contributions
of type (e) and (f) in favor of contributions of type (d) leaves leftover chiral logarithms of the
valence-valence PGBs, `(m2

xx,a), multiplied by combinations of hairpin couplings that vanish in the
unmixed limit. For a 6= 0, mx,my→ 0, graphs of type (a), (b), (c), and (e) contribute; the valence-
sea, taste-pseudoscalars PGBs are not true Goldstone bosons in the chiral limit. However, no new
loop integrals arise. The details of the calculation and the results will be presented in Ref. [7].

4. NLO loop corrections to decay constants

The decay constants are defined in terms of the matrix elements of the axial currents,

−i fxy, t pµ = 〈0| jµ5
xy, t |φ t

xy(p)〉 . (4.1)

The NLO corrections come from wave function renormalization [graphs (a), (c), and (d) of Fig. 1],
insertions of the O(φ 3)-terms of the LO current [graphs (g), (h), and (i) of Fig. 1], and NLO analytic
terms [12]. The LO current is determined by the kinetic energy vertices of the LO Lagrangian, and
is therefore the same as in unmixed SChPT. Likewise, the NLO wave function renormalization
corrections are determined by self-energy contributions from tadpoles with kinetic energy vertices
from the LO Lagrangian. To generalize the results of the unmixed case, we have only to replace the
propagators with those of the mixed-action theory; nothing in the calculation of the relevant part
of the self-energies or the current-vertex loops is sensitive to the sector of the external quarks. We
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have

f NLO loop
xy, t

f
= 1− 1

8(4π f )2 ∑
a

1
4 ∑

i′i′
`(m2

i′i′,a
)+

∫ d4q
π2 (Da

xx +Da
yy−2θ

atDa
xy)

 . (4.2)

where x,y can take either valence (x,y) or sea (x,y) indices. This result holds for valence-valence
(x 6= y), sea-sea (x 6= y), and valence-sea (x and y) PGBs, and has the same form as in the unmixed
theory [13].

5. Summary

Using mixed-action SChPT, we have calculated the NLO loop corrections to the valence-
valence and valence-sea masses and decay constants of flavored PGBs in all taste irreps. The
results have been cross-checked by performing two independent calculations, and we have verified
the results reduce correctly when valence and sea quark actions are the same. In the valence-valence
sector, the taste pseudoscalars are Goldstone bosons in the chiral limit, at nonzero lattice spacing.
The NLO analytic terms arise from tree-level contributions of the (NLO) Gasser-Leutwyler and
generalized Sharpe-Van de Water Lagrangians. They have the same form as in the unmixed case,
with different couplings in the valence-valence, sea-sea, and valence-sea sectors.

The NLO loop corrections to the self-energies of the valence-valence, flavored PGBs are given
in Eqs. (3.4)-(3.8); those for the valence-valence and valence-sea decay constants are given in
Eq. (4.2). They have the same form as the results in ordinary, unmixed SChPT. The results for the
valence-sea self-energies will be included in Ref. [7].
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