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1. Introduction

Lattice QCD provides a non-perturbative method for investigating strond Q@€ Markov
Chain Monte-Carlo methods in Euclidean space-time. If one is interested imtlernspectrum,
lattice QCD is a very powerful tool for determining the ground states in angitiannel. Higher ex-
citations or even resonances, however, are much more intricate, beoqaenentially suppressed
contributions must be disentangled from correlator data plagued with stdtisiise.

It is well known that correlator matrices are of significant help in such atsim. With the
variational approach [1, 2, 3] or factorising fit models, excited enésggls can be determined
from such a matrix. Furthermore, the larger the matrix the more energy lemelbe extracted
with confidence.

However, building a correlator matrix from a large basis of operators isnaadding task,
both in computational resources and in storage space. With these challengend the Lapla-
cian Heaviside smearing (LapH) method [4] and its stochastic version K§L&pwere invented,
leading to remarkable results, see for instance Refs. [6, 7, 8]. Its ylartistrength lies in the
possibility to construct a large number of operators from a fixed (bu¢)argmber of inversions.

In this proceeding contribution we will investigate sLapH for the case of tiisowtwisted
mass formulation of lattice QCD [9]. In particular, we compare sLapH with morentional
methods for the case of tlig n’ mesons, which obtain significant contributions from disconnected
diagrams.

2. Stochastic LapH Smearing

The LapH method is a smearing method based on the Laplace oﬂémltrixrh is decomposed
into its eigensystem
A=VaApV, . (2.1)

The matrixVx contains all eigenvectorsand/\, is a diagonal matrix containing the eigenvalues.
A smearing matrix?”’
S =\p0 (02 +An) Vi = VeV, (2.2)

can be defined, wher@(-) is the Heaviside function. Therefore, all eigenvalues larger than & cutof
o2 are neglected and the mathi% consists only of the eigenvectors belonging to the eigenvalues
smaller thano?. The number of eigenvalues needed depends on the spatial volume ditittee la
and the parametes?. It was found thato? = 0.33 is optimal [5] for excited state suppression
independent of the operator. On 24896 lattice, for example, this amounts to 900 eigenvectors
per timeslice. In the same reference it was shown that the shape of tlee se@pproximately
Gaussian.

A quark line2 can be written in terms of the smearing matrix

2 =DU.7Q LypMT = pllyg (vJQ vy VIDWT, (2.3)

whereDU) is a covariant derivative? = VIQ Vs is called perambulatof) = y;M, y4 is a Dirac
matrix, andM being the lattice Dirac operator. The computatiorQof'v must be performed for
each eigenvector, which is a significant drawback of this method, in particular for large lattice
volumes.
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2.1 Stochastic LapH

In order to overcome this drawback the stochastic LapH method was ingddudref. [5].
Random noise vectors which live in the time, Dirac- and Laplace eigenspace should reduce the
computational cost and not change the result significantly if the followilagioas hold

E(p)=0 and E(pip])=3j, (2.4)

whereE(-) denotes the expectation value. The propag&ot can then be calculated approxi-
mately by solving
QX" =p' (2.5)

for Ng different random vectorg'. Dilution can be used to enhance the signal-to-noise ratio. The
improvement factor is proportional {@d\l/—N? wherelNq is the number of dilution vectors. Therefore,
the signal-to-noise ratio ameliorates proportional to the number of inverdimmes. The dilution
factorises into three subspaces, time, Dirac- and eigenspace and threndidlilution scheme can

be applied in each subspace. In Ref. [5] four basic dilution schemesatessed

PP = &, b=0, (no dilution)
|g J

pigt”—aj i, b=0,...,N—1, (full dilution)
pigb> =& & /N, b=0,...,0—1, (block-J)
P = 3j .imods, b=0,...,d—1, (interlaced),

whereN is the size of the subspace (time, Dirac- and eigenspaceNahds an integer.Ng is 1
for no dilution, N for full dilution andJ for interlace or block dilution. Another possibility for a
dilution scheme would be to combine the interlace and the block dilution schemes.

Using random noise vectors and a dilution scheme, one arrives at a sirtassion for the
stochastic quark lines as in eq. 2.3

2=5,E (D(j)yQ*VSP(m p (DKVgP() p)T) . (2.6)

Here, the first partp = DU). QP p, acts as a quark sink and the second ppst, DKVsP®) p
as a quark source. A stochastic perambulafarcan be defined

Ps=VsQ WVsPP)p (2.7)

Its computation is the computationally most expensive part of this method. Hovwbe number
of inversions which need to be performed only depends on the numbandém vectors and the
dilution scheme. The volume dependence of the non-stochastic LapH methadnhost disap-
peared and appears only very mildly in certain dilution schemes if at all. Thistinéghseful for
larger lattices with many eigenvectors.

To illustrate the problem of computational cost and storage, the number ersions and
the storage space needed for & 486 lattice is calculated. 900 eigenvectors per timeslice are
needed and hence the matkixwould need roughly 427 GB of storage space. To calculate the
full perambulator2?, 900. 96- 4 = 345600 inversions would have to be performed and the final



Testing the stochastic LapH method in the twisted mass formulation Christian Jost

perambulator would need approximately 1780 GB. The computational ctis¢ afiversions and
the storage requirements make it unfeasible to use this method for larger lattibesnoment.

Using the stochastic ansatz reduces the computational cost significantly.fulVitlilution
in time and in Diracspace and an interlace-8 dilution in eigenspace (TF,DFthinumber of
inversions would reduced to 3072, while the storage space would réal&8 GB. Usually, it is
not necessary to use full dilution in time, the computational cost could beeddurther. Using
an interlace-16 scheme in time (T116,DF,LI8) would result in 512 inversiodsasstorage size of
only 2.6 GB. The latter scheme is entirely independent of the lattice size.

3. Numerical Experiments

3.1 Simulation parameters

Our simulations were performed on t#&€0.24 ensemble witiN; = 2+ 1+ 1 dynamical
Wilson twisted mass fermions as produced by the European Twisted Madsocatian [10, 11,
12]. The volume of this lattice i¢ = 243- 48 with a lattice spacing af= 0.086 fm, and a pion mass
of about 390 MeV. In total, 314 gauge configurations were used.tFarge and charm quarks the
so-called Osterwalder-Seiler mixed action [13] waiiss = 0.02322 andap; = 0.27678 (c. f. [14])
was used. More details on this approach can be found in a contribution totiference [14]. The
inversions and the computation of the eigenvectors were performed with tH@@mLsoftware
suite [15].

The Euclidean correlation functions for then’ system is given by

(g(t)qq’ = <ﬁq(t,+t)ﬁq’(t/)>» qa q/ € f,S,C, (31)

where the operator@; = (uiysu+ d_iygd)/ﬁ, Us=Sysand0. = Ciysc were used. For this oper-
ator basis the resulting matri« is a 3x 3 matrix which is diagonalised by solving the Generalised
Eigenvalue Problem. The effective masses

aM™ = —log(A "™ (t,t0) /(AW (t + 1,to)) (3.2)

are computed from the eigenvalue®) (t,to). In this ansatz thg meson corresponds to the ground
state i = 0) and then’ meson to the first excited state-¢ 1). The second excited state 2)
corresponds to the; meson but cannot be resolved due to the small correlation matrix. In addition,
we investigate the disconnected contribution to the neutral pion, corréisygpto the operator

00 = (Uiysu—diysd) /v/2.

For the calculation of the eigenspace of the Laplace operator, two iteratfi@is HEX [16]
smearing with paramete(6.76,0.95) were applied to the spatial gauge fields. On each timeslice
we calculated 120 eigenvectors and we used the previously introducédidrdisgheme (TF, SF,
LI8).

The sLapH method is tested against a standard approach of computialationr functions.

In this standard approach, connected diagrams were computed bytasingstic timeslice sources
and the so called “one-end-trick” [17]. Disconnected diagrams whiell @@ all-to-all approach
were sampled using 24 stochastic volume sources with complex Gaussian feisalifferent
methods were used to improve the signal-to-noise ratio. The first one ispngoparameter
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Figure 1: Disconnected contribution to tm8 (left) and then, (right) correlation functions are
shown. Both are normalised tga = 1. The points are slightly displaced for better legibility.

variance reduction scheme, see Ref. [17], which will be denoted withSsGYe second one is
only available for they, n’ system in the twisted mass formulation and it relies on the identity [18]

D;'-D ;! = —2iuD; D ?, (3.3)
u d d u

whereD, 4 are the up and down lattice Dirac operators and the twisted mass parameter corre-
sponding to the light quarks. It can be applied for strange and chaankgjas well by introducing
a doublet of strange (charm) quarks, see Ref. [14] for details. Tisemeduction will be denoted
by improved sGVS.

The efficiency of sLapH as a smearing method to suppress excited statibuiion can be
tested by comparing the effective mass plateaus computed from sLapl3,&@Mmproved sGVS.
In the latter two methods only local operators were used and the size ofrtieéation matrix was
3x3. Hence, a direct comparison was possible and a notable reductgaitefd state contributions
in case of sLapH should be observable.

3.2 Corrélation functions

The disconnected parts of the correlation functions forthand ther), are shown in Figure 1.
They are normalised tD(1) due to an unknown normalisation factor in sLapH. Thecontains
only the light quark contributions to thg andn’ mesons. Within errors, the results obtained from
different methods for these observables do agree quite well. While tiies éor the disconnected
part of ther® are compatible in between sLapH and sGVS, sLapH and improved sGVSutrn o
to outperform sGVS for the disconnected part of thesLapH and improved sGVS give roughly
equal error estimates with a slight advantage for sLapH. However, thputation cost is a factor
24/512 in favour of improved sGVS.
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Figure 2: (left) Effective mass plot of thg (squares) and’ (circles) using the sGVS method (full
symbols) and the sLapH method (empty symbols). (right) The same as (léftyjthiconnected
contributions only. The points are slightly displaced for better legibility.

3.3 Effective M asses

In the left panel of Figure 2 the effective masses of thffilled symbols) and the)’ (open
symbols) are shown for the sGVS and sLapH method. General agreeuitleint errors can be
observed. However, the number of gauge configurations and thefdize correlation matrix are
too small to obtain a good signal for tiné state.

Unfortunately, sLapH seems not to suppress excited states very mlicht ofa= 2, 3 a small
effect can be observed. This can be seen even better by looking@irthected correlators only,
corresponding to a connected neutral pion and the so caiethte, a pion made out of strange
quarks. The effective masses of these states are shown in the rightgbdigure 2. The poor
suppression of excited state contributions might be due to poorly chosemgizrs for the link
smearing used in the Laplace operator. The eigenvalues of the Lapkaiegamare squeezed quite
strongly for our choice of smearing parameters compared to unsmearge ljaks. This results
in a more shallow increase of the eigenvalues. In conclusion, much morevedg@rs would
be needed to achieve a good reduction of excited state contributions. Wiskr link smearing
parameters should have the very opposite effect and stretch the speétioe Laplace operator.
Hence, less vectors would be needed to gain a good reduction.

4. Summary

In this article we presented a first test of the sLapH method in comparisomttastbstochas-
tic methods in the twisted mass formulation for the n” mesons. The results for the meson
masses extracted from the different methods do agree within errorsithuthe sLapH method
being roughly 20 times more expensive. However, the higher expeiseh womes mainly from
the increased number of inversions, can be put into perspective bygmloéinthe inversions, which
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can be easily stored in form of perambulators on a hard drive, canuseddor other observ-
ables. In addition, the contractions to build correlation functions are endapthe sLapH method
compared to standard methods which would become more relevant for edpegator basis.

As a surprise we did not observe that sLapH suppresses excited effitesntly. In fact,
in a comparison to a local-local correlator matrix we see only marginal imprawsmd his is
most probably due to a bad tuning of link smearing in the Laplace operatereXjplicit impact
of the link smearing and the impact of the lattice spacing on the efficiency git$laae under
investigation at the moment.

Other physical channels will be studied as well. sLapH clearly still has thansalge of
providing the possibility to compute many operators for a fixed number ofgiomes.

We thank all members of ETMC for the most enjoyable collaboration. This vgmslpported
in part by DFG and NSFC (CRC 110).
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