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We present preliminary results from lattice QCD for part of the hadronic light-by-light scattering
contribution to the muon anomalous magnetic moment. While the size of the computed piece
is roughly consistent with model calculations, several important systematic errors remain uncon-
trolled. The most significant is the absence of charged sea quarks, or the use of quenched QED.
We outline the next step of using dynamical QED to obtain the full hadronic light-by-light scat-
tering contribution to the muon g−2.
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Update on hadronic light-by-light

1. Introduction

The muon anomaly aµ provides one of the most stringent tests of the standard model because it
has been measured to great accuracy (0.54 ppm) [1], and calculated to even better precision [2, 3, 4].
At present, the difference observed between the experimentally measured value and the standard
model prediction ranges between 249 (87)× 10−11 and 287 (80)× 10−11, or about 2.9 to 3.6
standard deviations [2, 3, 4]. To confirm such a difference, new experiments have been proposed
at Fermilab (E989) and J-PARC (E34), aiming for an accuracy of 0.14 ppm. Improvement in the
experiments, however, will not make sense unless the uncertainty in the theory is also reduced.

The theory error is dominated by the QCD contributions. The error on the leading-order (LO)
hadronic vacuum polarization (HVP) contribution stands at a bit more than half a percent. It is
computed from a dispersion relation using the experimental data on the production cross section
of hadrons (+γ) in e+e− collisions at low energy, or those from the hadronic decay of the τ-lepton
with isospin breaking taken into account. Lattice QCD simulations on this quantity are improving
rapidly [5], and will provide an important crosscheck.

Unlike for the HVP, the hadronic light-by-light scattering (HLbL) contribution, aµ(HLbL),
cannot be computed from experimental data and a dispersion relation. So far, only model calcu-
lations have been done. The uncertainty quoted in the “Glasgow consensus” [6] is about 25%,
but larger values can be found in the literature [7]. The size of aµ(HLbL) is the same order as
the current discrepancy between theory and experiment. Thus, a first principles calculation that is
systematically improvable is desirable.

2. Non-perturbative QED method

Figure 1: Two classes of diagrams contributing to aµ(HLbL). On the left, all QED vertices lie on a single
quark loop. The right diagram is one of six where QED vertices are distributed over two to four quark loops.

We start by pointing out the difficulty in computing aµ(HLbL) using lattice QCD, and then
explain our strategy to overcome it. Figure 1 shows two (of 7) types of diagrams, classified accord-
ing to how photons are attached to the quark loop(s). In the lattice calculation, the computation
of the vacuum expectation value of an operator involving quark fields requires the inversion of the
quark Dirac operator. The cost of inversion for all source and sink pairs is prohibitive since it re-
quires solving the linear equation Dmq

[
UQCD

]
x = b for Nsites number of sources b where Nsites is

the total number of lattice sites. In many problems all of these inversions are not necessary. For
our problem, the correlation of four electromagnetic currents must be computed for all possible
values of two independent four-momenta. This implies (3× 4×Nsites)

2 separate inversions, per
QCD configuration and quark species and each given four-momentum of the external photon for
the calculation of the quark-line-connected diagram in Fig. 1, which is astronomical.
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Update on hadronic light-by-light

We have proposed an efficient alternative, a non-perturbative QCD+QED method which treats
the photons and muon on the lattice along with the quarks and gluons. To obtain the result for the
diagram in Fig. 1 the following quantity is computed [8],

〈ψ(t ′,p′) jµ(top,q)ψ(0,p)〉HLbL =− ∑
q=u,d,s

(Qqe)2
∑
k

{〈
γµSq(top,−q;k)γνSq(k; top,−q)

δνρ

k̂2
G(t ′,p′;−k)γρG(−k;0,−p)

〉
QCD+QED−

〈
γµSq(top,−q;k)γνSq(k; top,−q)

〉
QCD+QED

δνρ

k̂2

〈
G(t ′,p′;−k)γρG(−k;0,−p)

〉
QED

}
,(2.1)

where ψ annihilates the state with muon quantum number, and jµ is the quark electromagnetic
current 1. k is a Euclidean four-momentum, p is a three-momentum, each quantized in units of
2π/L. δµν/k̂2 (k̂µ ≡ 2sin(kµ/2)) is the lattice photon propagator in Feynman gauge. Sq and G
denote Fourier transformation of D−1

mq
and D−1

mµ
, respectively, and spin and color indices have been

suppressed. One takes t ′� top� 0 to project onto the muon ground state

lim
t ′�top�0

〈ψ(t ′,p′) jµ(top,q)ψ(0,p)〉HLbL =

〈0|ψ(0,p′)|p′,s′〉
2E ′V

〈p′,s′|Γµ |p,s〉〈p,s|ψ(0,p)|0〉
2EV

× e−E ′(t ′−top)e−E(top), (2.2)

where the matrix element of interest is parametrized as

〈p′,s′|Γµ |p,s〉 ≡ ū(p′,s′)
(

F1(q2)γµ + i
F2(q2)

2mµ

[γµ ,γν ]qν

)
u(p,s). (2.3)

u(p,s) is a Dirac spinor, and q = p′− p is the space-like four-momentum transferred by the photon.
The contribution to the anomaly is found from aµ ≡ (gµ −2)/2 = F2(0).

For now quenched QED (q-QED) is used for the average in (2.1), implying no fermion-
antifermion pair creation/annihilation via the photon. Note that only the sea quarks need to be
charged under U(1); the lepton vacuum polarization corresponds to higher order contributions
which we ignore. This approximation was chosen to make this first calculation computationally
easier, even though it is incomplete. We can remove it to get the complete physical result, as dis-
cussed below in the final section. The first term, expanded in q-QED, can be reorganized according
to the number of photons exchanged between the quark loop and the muon line. If the second term
in Eq. (2.1) is subtracted, the connected diagram in Fig. 1 emerges as the leading-order contribution
(×3 since two photons attach to the left, right, and on both sides of the one attached “by hand” in
our method).

The main challenge in the non-perturbative method is the subtraction of the leading, unwanted
components (α for the electric part and α2 for the magnetic part). Note that the two terms in
Eq. (2.1) differ only by way of averaging. For finite statistics, the delicate cancellation between
them is only realized because they are highly correlated with respect to the QCD and QED configu-
rations used in the averaging. We first test this point by asking if the nonperturbative QED method

1The point-split, exactly conserved, lattice current is used for the internal vertices while the local current is inserted
at the external vertex.
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Update on hadronic light-by-light

applied to leptons only reproduces the known value of the sixth-order leptonic light-by-light scat-
tering contribution [9], which is given exactly by the counterpart of the connected diagram in Fig. 1.

The test calculation was done in quenched 2 non-compact QED, in the Feynman gauge, using
domain wall fermions (DWF) [12]. To take advantage of the logarithmic enhancement due to the
lighter electron mass, ln(mµ/me) [9], the mass of the lepton in the loop was set to 0.01. The
form factor F2 was computed only at the lowest non-trivial momenta and was not extrapolated to
zero. The result is F2 = 3.96(70)×10−4 = 24.4(4.3)(α/π)3 while perturbation theory gives about
10(α/π)3 for F2(0). The calculation repeated on a larger 243× 32 lattice, again for the lowest
non-zero momentum, yields F2 = 1.19 (32)×10−4 = 7.32 (1.97)(α/π)3, roughly consistent with
perturbation theory and indicating large finite volume effects.

2.1 QCD contribution

The inclusion of QCD into the light-by-light amplitude is straightforward: simply multiply the
U(1) gauge links with SU(3) links to create a combined photon and gluon configuration [13], and
follow exactly the same steps, using the same code, as described in the previous sub-section. We
use one quenched QED configuration per QCD configuration, though different numbers of each
could be beneficial and should be explored.

Our main result is computed on a lattice of size 243×64 with spacing a= 0.114 fm (a−1 = 1.73
GeV) and light quark mass 0.005 (mπ = 329 MeV) (an RBC/UKQCD collaboration 2+1 flavor,
DWF+Iwasaki ensemble [10, 11]). The muon mass is set, somewhat arbitrarily, to mµ = 0.1 (190
MeV), and e = 1 as before. The all mode averaging (AMA) technique [14] is used to achieve
large statistics at an affordable cost. Besides the exact part of the AMA calculation, which is
done using a single point source on 20 configurations, the approximation was computed using 400
low-modes of the even-odd preconditioned Dirac operator and 216 point sources (for the external
vertex) computed with stopping residual 10−4 on 505 configurations. The external vertex is inserted
on time slice top = 5 with incoming and outgoing muons at t = 0 and 10, respectively. While the
incoming muon is at rest, the three-momenta in units of 2π/L of the outgoing muon are taken to
be (±1,0,0), (±1,±1,0), (±1,±1,±1), (±2,0,0), and (±1,±2,0) and permutations. We also
include the vector current renormalization in pure QCD from [11] at the external vertex.

In the AMA procedure the expectation value of an operator is given by 〈O〉 = 〈Orest〉+
1

NG
∑g〈Oapprox,g〉 [14], where NG is the number of measurements of the approximate observable,

and “rest" refers to the contribution of the exact observable minus the approximation, evaluated for
the same conditions. In the present calculation, the statistical errors are completely dominated by
the second term, and NG = 216.

In Fig. 2 we show F2(Q2) for all of the momenta used in our study. The signals for the second
and third lowest Q2 values are more than four standard deviations (σ ) from zero, the largest, 2.5
σ , while the lowest and second largest Q2 points show no signal outside of statistical errors. The
former have many more momenta+projector combinations to average over, which is reflected in the
size of the errors (in order of increasing Q2, there are 12, 48, 48, 12, and 96 combinations). The

2In the pure QED case, quenching is not an approximation since the neglected vacuum polarization contributions
give higher order corrections to the light-by-light scattering diagram.
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Update on hadronic light-by-light

central values are comparable in size and sign to model estimates, with statistical errors roughly
the same size as quoted model errors.

0 0.1 0.2 0.3 0.4
Q2 (GeV2)

-0.05

0

0.05

0.1

F 2(Q
2 )

Figure 2: The magnetic form factor (in units of (α/π)3) for the muon from HLbL scattering. The square
shows the model estimate [6].

Finite size and quark mass dependence were checked on another DWF+Iwasaki ensemble [15]
with size 163×32 and light quark mass mq = 0.01 (mπ = 422 MeV). Two muon masses, mµ = 0.4
and 0.1, were used. The external electromagnetic vertex is inserted on time slice top = 6 and the
incoming and outing muons are created and destroyed at t = 0 and 12, respectively. The outgoing
muon has one unit of momentum, and results were averaged over all directions and reflections
±~p. Following the same procedure (except that we did not use AMA), for mµ = 0.4 (6.5 times the
physical muon mass), F2(Q2 = 0.38GeV2) = (−15.7± 2.3)× 10−5 = (−9.66± 1.42)× (α/π)3.
The magnitude is roughly 10 times larger than the model estimates for aµ(HLbL), and even has
the opposite sign. Though one should not place too much trust in comparisons with models since
the pion mass is heavy here, the pion pole term is probably not dominant and the sub-leading terms
can be important and have the opposite sign [6]. Further, the sub-leading terms are proportional
to m2

µ [6], and setting mµ = 0.1, the magnitude of the form factor decreases significantly, F2(q2 =

0.19GeV2) = (−2.21±0.75)×10−5 = (−1.36±0.46)× (α/π)3, but still has the opposite sign.
Finally, to check the subtraction is working in the (QCD+QED) case e is varied as follows. The

same non-compact QED configurations are used in each case; e is varied only when constructing
the exponentiated gauge-link, Uµ(x) = exp

(
ieAµ(x)

)
. Thus the ratio of form factors, and hence

the α-dependence, can be determined accurately. Since one photon is inserted explicitly, and the
charges at the associated vertices are not included in the lattice calculation, the subtracted amplitude
should behave like e4. Using e = 0.84 and 1.19, the changes in the subtracted correlation function
relative to e = 1 should be 0.5 and 2.0, respectively. This is what is observed numerically.

3. Discussion and Summary

In this paper, we presented preliminary lattice QCD results for part of the contribution to
aµ(HLbL). The calculation is done using a nonperturbative QED method whose feasibility was
tested in the pure QED case. As shown in Fig. 2, both the sign and size of F2 for relatively heavy
pions (mπ = 329 MeV) are found to be consistent with model values, except for the lowest and
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Update on hadronic light-by-light

second largest values of Q2 where it is zero within statistical errors. Even heavier quarks and
muons lead to large values with the opposite sign compared to models, though this is consistent
with expected non-leading contributions.

A significant shortcoming in the current calculation is the absence of diagrams with two or
more quark loops coupled to photons as the one shown on the right in Fig. 1. They are next-to-
leading order in the number of colors, 1/NC, and 5 diagrams other than the ones in Fig 1 vanish in
the SU(3)-flavor symmetry limit. They may be significant and could correct the odd Q2 behavior
of F2 in Fig. 2. This behavior may also be due to poor statistics and prevents us from making a
reliable Q2→ 0 extrapolation.

We are currently working to include the contribution of the missing diagrams by using dy-
namical QCD+QED configurations, or equivalently, by re-weighting the quenched QED configu-
rations [16]. In Fig. 3 we show all possible quark-line disconnected diagrams. The corresponding
subtracted correlation functions are shown in Fig. 4. Since the diagrams are not computed sep-
arately, but arise from hadronic vacuum polarization in the dynamical QED configurations, it is
important that they occur with the same multiplicity. A careful accounting of the contributions
shown in Fig. 4 shows this is true. A new complication arises in the last diagram where the quark
loops containing the external vertex and the manually inserted virtual photon are different. In the
latter, a random 4-volume source is required.

I. HADRONIC LIGHT-BY-LIGHT CONTRIBUTION

Thus far, we foused primarily on the hadronic light-by-light contribution involving a

quark loop with four electromagnetic (EM) verties, called LBL(4).

Below, I list up all diagrams containing more than one quark loop having EM vertices

(with no lattice-artifact interactions) 1.

The hadronic light-by-light scattering diagrams with two quark loops having EM vertices

2

〈 〉

QCD

, (1)

〈 〉

QCD

, (2)

〈 〉

QCD

. (3)

1 All figures are brought from M.H.’s slide used at Lattice 2005. Sorry for difference of notations used in

Sec. II
2 Individual photon lines emanated from quark loops should be contracted with those attatched on the

muon lines in all possible ways.

2

I call the contributions (1), (2) and (3) as LBL(1,3), LBL(2,2) and LBL(3,1), respectively

The hadronic light-by-light diagrams with three quark loops having EM vertices

〈 〉

QCD

, (4)

〈 〉

QCD

. (5)

I call the contributions (4) and (5) as LBL(1,1,2) and LBL(2,1,1), respectively.

The hadronic light-by-light diagrams with four quark loops having EM vertices

〈 〉

QCD

, (6)

I call the contribution (6) as LBL(1,1,1,1).

3
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〈 〉

QCD

, (4)

〈 〉

QCD

. (5)

I call the contributions (4) and (5) as LBL(1,1,2) and LBL(2,1,1), respectively.

The hadronic light-by-light diagrams with four quark loops having EM vertices

〈 〉

QCD

, (6)

I call the contribution (6) as LBL(1,1,1,1).

3

Figure 3: Disconnected quark-line diagrams in HLbL scattering. The photons connect the quark loops with
the muon line in all possible combinations.
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Update on hadronic light-by-light
II. NONPERTURBATIVE QED METHOD WITH FULL QED SIMULATION

The main terms that we compute by lattice simulation are 3

MC =

〈 〉

QCD+f-QED

, (7)

MC′ =

〈 〉

QCD+f-QED

, (8)

MD =

〈 〉

QCD+f-QED

. (9)

The subtraction term for the connected component with the internal vertices on the quark

loop different from the external vertex is

〈 〉

QCD+f-QED

SC =

〈 〉f-QED . (10)

The subtraction term for the connected component with photon emitted from the external

vertex is

〈 〉

QCD+f-QED

SC′ =

〈 〉f-QED . (11)

3 The second contribution (8) arises from the lattice-artifact interaction. It is necessary to guarantee the

gauge invariance at finite lattice spacing a.
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The subtraction term for the disconnected component with photon emitted from the external

vertex is

〈 〉

QCD+f-QED

SD =

〈 〉f-QED . (12)

Our new version of non-perturbative QED method, which incorporates all relevant

hadronic light-by-light scattering conitributions is

h-LBL +O(α4) =
1

3
[MC +MC′ +MD − SC − SC′ − SD] . (13)

A new finding here is that although individuals arise from MC + MC′ and/or MD with

distinct degeneracies, as shown in Table I, all hadronic light-by-light diagrams arise with

triplicate degeneracy in MC +MC′ +MD.

TABLE I: Origin of degeneracy factor

MC +MC′ MD

LBL(4) 3 0

LBL(1,3) 0 3

LBL(2,2) 1 2

LBL(3,1) 2 1

LBL(1,1,2) 0 3

LBL(2,1,1) 1 2

LBL(1,1,1,1) 0 3

III. METHOD TO CALCULATE THE DISCONNECTED CONTRIBUTION (9)

AND (12)

The diagrams (9) and (12) contain the quark loop without the external vertex. How we

can calculate them ?

5

Figure 4: The complete HLbL contribution in the non-perturbative QED method.
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