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1. Introduction

Mixed actionapproaches, where valence and sea fermion actions are chosen differently, are
used frequently in lattice QCD. They possess a number of important advantages compared to the so
calledunitary case, where valence and sea quark actions are identical. In particular, it is possible
to use a valence action obeying more symmetries than the sea action in cases where the valence
action cannot be used in the sea for theoretical reasons or because of too high computational costs.
One can even go one step further and try to correct for small mismatches in bare parameters in the
sea simulation by using a partially quenched mixed action approach.

Of course, a mixed action approach has also disadvantages, most prominently the breaking of
unitarity, which might for instance drive certain correlators negative. Also, it is not clear a priori
how big lattice artifacts one encounters in mixed formulations.

In this proceeding contribution we will present results on amixed action approach with so
called Osterwalder-Seiler [1] valence quarks on aNf = 2+ 1+ 1 flavour Wilson twisted mass
sea [2] and compare to unitary results [3, 4, 5]. This particular action combination has the advan-
tage that the flavour symmetry breaking present in the sea formulation is avoided in the valence
formulation. Moreover, the matching of valence and sea actions is particularly simple [1]. As
physical example we study theη andη ′ system. The corresponding correlation functions obtain
significant contributions from disconnected diagrams and are, therefore, uniquely sensitive to dif-
ferences in between valence and sea formulations1. We study the continuum limit with different
matching conditions and find remarkably good agreement to the unitary case. First accounts of this
work can be found in Ref. [8].

2. Lattice actions

The results we will present in this proceeding are obtained by evaluating gauge configuration
provided by the European Twisted Mass Collaboration (ETMC)[9, 10, 11]. We use the ensembles
specified in table 1 adopting the notation from Ref. [9]. Moredetails can be found in this reference.
All errors are computed using a blocked bootstrap procedureto account for autocorrelation.

The sea quark formulation is the Wilson twisted mass formulation with Nf = 2+1+1 dynam-
ical quark flavours. The Dirac operator foru andd quarks reads [2]

Dℓ = DW +m0+ iµℓγ5τ3 , (2.1)

whereDW denotes the standard Wilson operator andµℓ the bare light twisted mass parameter. For
the heavy doublet ofc andsquarks [12] the Dirac operator is given by

Dh = DW +m0+ iµσ γ5τ1+µδ τ3 , (2.2)

with τ i representing the Pauli matrices in flavour space. We remark that the twisted term intro-
duces flavour mixing between strange and charm quarks that needs to be taken into account in the
analysis.

1Note that this was also discussed in the context of the validity of the fourth root trick in staggered simulations, see
Refs. [6, 7] and references therein.
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The bare Wilson quark massm0 has been tuned to its critical valuemcrit [13, 9] to achieve
automatic orderO (a) improvement [14], which is one of the main advantages of thisformulation.

In the valence sector we employ the Osterwalder-Seiler (OS)action [1]. Formally, we intro-
duce a twisted doublet both for valence strange and charm quarks [1, 15]. The Dirac operator for a
single quark flavourq∈ {s,c}

Dq,q′ = DW +mcrit ± iµqγ5 (2.3)

is formally identical to the one in the light sector Eq. 2.1. Flavourq (q′) will come with+µq (−µq).
We denote the strange (charm) quark mass withµs (µc). In Ref. [1] it was shown that automatic
O(a)-improvement stays valid and unitarity is restored in the continuum limit.

For matching the strange quark mass we employ two proceduresbased on meson masses.
In previous studies it was found that matching kaon masses isbest in the sense that the residual
lattice artifacts in the results computed in a mixed framework are small [16]. The corresponding
interpolating operator in the OS framework reads

OK+ = ψ̄s iγ5 ψd . (2.4)

Note that we rely to the so called physical basis throughout this proceeding contribution [17]. For
details on how to compute the kaon mass in the unitary case we refer to Ref. [10]. As a second
matching observable we use the massMηs of the so-calledηs meson – a pion made out of strange
quarks which does not exist in nature.Mηs can be obtained from the connected only correlation
function of the OS interpolating operator

Oηs =
1√
2
(ψ̄s iγ5 ψs+ ψ̄s′ iγ5 ψs′) . (2.5)

In both cases we tune the value ofaµs such that the kaon (ηs) masses agree within error in between
the mixed and the unitary formulation. In order to compute the matching values forµs we per-
formed inversions in a range ofaµs values around a first guess obtained fromµs = µσ −ZP/ZSµδ ,
computedMK+ andMηs, and interpolated to the matching point where needed. The matching values
for aµs for the two matching observables and all ensembles can be found in table 1.

The value of the charm quark mass turns out to be not very important for our investigation,
because the charm does not contribute significantly toη andη ′ mesons. Therefore, we use the
following relations for the bare twisted quark mass parameters to obtain

µc = µσ + ZP/ZS µδ . (2.6)

The value for the ratio of renormalisation constants can be found in Ref. [18]. The actual values
for µc can again be found in table 1.

3. Pseudoscalar flavour-singlet mesons

In order to extractη andη ′ states we compute the Euclidean correlation functions

C (t)qq′ = 〈Oq(t
′+ t)Oq′(t

′)〉 , q,q′ ∈ {u,s,c} , (3.1)
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ensemble β aµℓ aµσ aµδ aµK+

s aµηs
s aµc L/a Nconf

A60.24 1.90 0.0060 0.150 0.190 0.0232 0.0138 0.2768 24 1177
B55.32 1.95 0.0055 0.135 0.170 0.0186 0.0110 0.2514 32 1964
D45.32sc 2.10 0.0045 0.0937 0.1077 0.0149 0.0118 0.1720 32 885

Table 1: The ensembles used in this investigation. For the labeling we employ the notation of ref. [9].
Additionally, we give the number of the configurationsNconf which were used to compute correlators in light
and strange quark sector, the mass of the OS valence strange quark µs for MK+ andMηs matching and the
OS valence charm quark massµc.

with operatorsOq = (q̄iγ5q+ q̄′iγ5q′)/
√

2, with q∈ {u,s,c} and identifyingu′ ≡ d, again relying
to the physical basis. The generalised eigenvalue problem is solved [19, 20, 21] for determining
Mη andMη ′. Correlation functions are made of quark connected diagrams and disconnected quark
loops. The quark connected pieces have been calculated via the so called “one-end-trick” [22]
using stochastic timeslice sources and for the disconnected diagrams we resort to stochastic volume
sources with complex Gaussian noise.

In the twisted mass formulation a very powerful variance reduction method is available for
estimating the disconnected loop(ūiγ5u+ d̄′iγ5d′)/

√
2, see Ref. [23]. In the OS case this variance

reduction also applies to strange and charm disconnected loops [8]. Double counting of loops
stemming from this approach needs to be taken into account bycombinatorial factors.

Finally, we can define mixing anglesφl , φs in the quark flavour basis using the pseudoscalar
matrix elements, see Ref. [3]. From chiral perturbation theory combined with largeNC arguments
|φl − φs|/|φl + φs| ≪ 1 can be inferred according to Refs. [24, 25, 26, 27] which is confirmed by
lattice QCD [4]. Therefore, we will consider only the average mixing angle

tan2φ ≡ Al ,η ′As,η

Al ,ηAs,η ′
, (3.2)

where theAq,n = 〈0|q̄iγ5q|n〉 are pseudoscalar matrix elements determined from the eigenvectors
with n∈ {η , η ′} andq∈ {l , s}.

Excited State Removal

To improve theη ′ (andη) mass determinations, we use a method first proposed in Ref. [28],
successfully applied for theη2 (theη ′ in Nf = 2 flavour QCD) in Ref. [23] and very recently to the
Nf = 2+1+1 case in Ref. [4]. It grounds on the assumption that disconnected contributions are
significant only for theη andη ′ state, but negligible for higher excited states. The methodinvolves
to subtract excited states from the connected correlators only. The subtracted connected and full
disconnected are combined inC , which is then used in the analysis. We refer to the discussion in
Ref. [5, 4] for more details.

4. Results

In order to compare the mixed case with the unitary case we match the two actions as detailed
in the previous sections using either the kaon or theηs mass. Next we computeMOS

η at this match-
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Figure 1: (a) We show∆Mη for three ensembles (D45.32sc, B55.32, A60.24) as a function of the squared
lattice spacing. Leftmost points correspond to linear continuum extrapolations indicated by the lines. (b) the
same as (a) but for theη ′ state, for which we additionally show constant extrapolations.

ing points and the difference to the corresponding unitary masses∆Mη . At fixed values ofr0Mπ

andr0MK – which is approximately the case for the ensembles D45, B55 and A60,r0∆Mη should
go to zero in the continuum limit with a rate ofO(a2). We do not expect the small differences in
r0MK in between the different lattice spacing values to influenceour results much, because unitary
and OS data are affected likewise.

r0∆Mη is shown in the left panel of figure 1 as a function ofa2/r2
0. For both matching observ-

ables we observe a linear dependence ina2/r2
0. A corresponding continuum extrapolation ina2/r2

0

leads to the expected vanishing of this difference ata= 0. Kaon matching clearly exhibits larger
differences, whileηs matching givesr0∆Mη compatible with zero for each value of the lattice spac-
ing separately. This indicates smallera2 artifacts forηs matching because the unitary masses show
constant scaling ina2 [3]. r0Mη ′ is shown in figure 1(b), which is in most cases compatible with
zero even at finite lattice spacing. In the left panel of figure2 we show∆φ , again for both matching
procedures, with the same conclusion.

As discussed in the introduction, one can correct for small mismatches in the bare simulation
parameters used for the sea action by going slightly partially quenched in the valence sector. In
order to test also this approach, we have tuned the respective aµs values for the ensembles D45,
B55 and A60 such that all ensembles yield the same values ofr0MK = 1.341 orr0Mηs = 1.571 .

At these matching points we again computeMη . In the right panel of figure 2 we showr0Mη as
a function ofa2/r2

0 for both matching conditions.We observe that, within statistical uncertainties,
both matching procedures lead to the same continuum results.

A direct comparison to the unitary case is possible by also correcting the unitary values of
Mη for the small mismatch in the bare strange quark mass values.This is possible by measuring
dM2

η/dM2
K and use it to shift allMη values to the same value ofr0MK = 1.341 [3]. The result is

again shown in the right panel of figure 2. The corresponding continuum extrapolation is linear in
a2/r2

0 and also compatible to both OS continuum points within errors.
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Figure 2: (a) We show∆φ for three ensembles (D45.32sc, B55.32, A60.24) as a function of the squared
lattice spacing. Leftmost points correspond to linear continuum extrapolations indicated by the lines. (b)
r0Mη as a function of(a/r0)

2 for the three ensembles. Different symbols correspond to two OS results with
different matching conditions and to the unitary results. The leftmost points represent the corresponding
continuum extrapolated values.

5. Conclusions and Outlook

We tested a mixed action approach with Osterwalder-Seiler valence quarks on a Wilson twisted
mass sea for theη andη ′ system. We expect this system to be most sensitive to different valence
and sea discretisation due to significant disconnected contributions in the correlation functions.

We employed two different conditions to match valence and sea actions, using the kaon mass
and theηs meson mass. For both matching procedures we observe agreement in the continuum
limit, and in particular also with the unitary results. Moreover, we have also corrected for small
mismatches in the bare strange quark mass value used in the gauge configuration generation, lead-
ing to a partially quenched mixed action approach. Also in this case we found within errors identi-
cal continuum extrapolated values forMη and the mixing angleφ for both matching procedures.

By correcting also the unitary values ofMη we found agreement to the OS results. Therefore,
we conclude that the mixed action approach can be used in the delicate case of theη andη ′ meson,
at least to the precision that we could achieve here.

We thank all members of ETMC for the most enjoyable collaboration. The computer time
for this project was made available to us by the John von Neumann-Institute for Computing (NIC)
on the JUDGE and Jugene systems. In particular we thank U.-G.Meißner for granting us access
on JUDGE. This project was funded by the DFG as a project in theSFB/TR 16. K.O. and C.U.
were supported by the BCGS of Physics and Astronomie. The open source software packages
tmLQCD [29] and R [30] have been used.

References

[1] R. Frezzotti and G. C. Rossi, JHEP10, 070 (2004),arXiv:hep-lat/0407002.

6



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
4
4
2

η , η ′ meson masses from a mixed action approach Falk Zimmermann

[2] ALPHA Collaboration, R. Frezzotti, P. A. Grassi, S. Sint and P. Weisz, JHEP08, 058 (2001),
hep-lat/0101001.

[3] ETM Collaboration, K. Ottnadet al., JHEP1211, 048 (2012),arXiv:1206.6719.

[4] C. Michael, K. Ottnad and C. Urbach, Phys. Rev. Lett. 111,181602(2013),arXiv:1310.1207.

[5] K. Ottnadet al., PoSLATTICE2013 , 253 (2013).

[6] E. B. Gregory, A. C. Irving, C. M. Richards and C. McNeile,PoSLAT2006, 176 (2006),
arXiv:hep-lat/0610044.

[7] UKQCD Collaboration, E. B. Gregory, A. C. Irving, C. M. Richards and C. McNeile, Phys.Rev.D86,
014504 (2012),arXiv:1112.4384.

[8] K. Cichy et al., PoSLATTICE2012 , 151 (2012),arXiv:1211.4497.

[9] ETM Collaboration, R. Baronet al., JHEP06, 111 (2010),arXiv:1004.5284.

[10] ETM Collaboration, R. Baronet al., Comput.Phys.Commun.182, 299 (2011),
arXiv:1005.2042.

[11] R. Baronet al., PoSLATTICE2010 , 123 (2010),arXiv:1101.0518.

[12] R. Frezzotti and G. C. Rossi, Nucl. Phys. Proc. Suppl.128, 193 (2004),hep-lat/0311008.

[13] T. Chiarappaet al., Eur. Phys. J.C50, 373 (2007),arXiv:hep-lat/0606011.

[14] R. Frezzotti and G. C. Rossi, JHEP08, 007 (2004),hep-lat/0306014.

[15] ETM Collaboration, B. Blossieret al., JHEP04, 020 (2008),arXiv:0709.4574.

[16] S. R. Sharpe and J. M. Wu, Phys.Rev.D71, 074501 (2005),arXiv:hep-lat/0411021.

[17] A. Shindler, Phys.Rept.461, 37 (2008),arXiv:0707.4093.

[18] ETM Collaboration, B. Blossieret al., PoSLATTICE2011 , 233 (2011),arXiv:1112.1540.

[19] C. Michael and I. Teasdale, Nucl.Phys.B215, 433 (1983).

[20] M. Lüscher and U. Wolff, Nucl.Phys.B339, 222 (1990).

[21] B. Blossier, M. Della Morte, G. von Hippel, T. Mendes andR. Sommer, JHEP0904, 094 (2009),
arXiv:0902.1265.

[22] ETM Collaboration, P. Boucaudet al., Comput.Phys.Commun.179, 695 (2008),
arXiv:0803.0224.

[23] ETM Collaboration, K. Jansen, C. Michael and C. Urbach, Eur.Phys.J.C58, 261 (2008),
arXiv:0804.3871.

[24] R. Kaiser and H. Leutwyler,arXiv:hep-ph/9806336.

[25] R. Kaiser and H. Leutwyler, Eur.Phys.J.C17, 623 (2000),arXiv:hep-ph/0007101.

[26] T. Feldmann, P. Kroll and B. Stech, Phys.Lett.B449, 339 (1999),arXiv:hep-ph/9812269.

[27] T. Feldmann, P. Kroll and B. Stech, Phys.Rev.D58, 114006 (1998),arXiv:hep-ph/9802409.

[28] H. Neff, N. Eicker, T. Lippert, J. W. Negele and K. Schilling, Phys.Rev.D64, 114509 (2001),
arXiv:hep-lat/0106016.

[29] K. Jansen and C. Urbach, Comput.Phys.Commun.180, 2717 (2009),arXiv:0905.3331.

[30] R Development Core Team,R: A language and environment for statistical computing, R Foundation
for Statistical Computing, Vienna, Austria, 2005, ISBN 3-900051-07-0.

7


