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The analytic continuation needed for the extraction of¢pamt coefficients necessitates in prin-
ciple a continuous function of the Euclidean time variable report on progress towards achiev-
ing the continuum limit for 2-point correlator measurenseimt thermal SU(3) gauge theory,
with specific attention paid to scale setting. In particulee improve upon the determination
of the critical lattice coupling and the critical tempenatof pure SU(3) gauge theory, estimating
roTec ~ 0.747Q7) after a continuum extrapolation. As an application the mheteation of the
heavy quark momentum diffusion coefficient from a correlatiocolour-electric fields attached
to a Polyakov loop is discussed.

31st International Symposium on Lattice Field Theory LAOAHR013
July 29 - August 3, 2013
Mainz, Germany

*Speaker.

(© Copyright owned by the author(s) under the terms of the @e&ommons Attribution-NonCommercial-ShareAlike Licen http://pos.sissa.it/



Towards the continuum limit in transport coefficient conapioins T. Neuhaus

1. Motivation

Among guantities playing a central role in the theoretioéiipretation of heavy ion collision
experiments at RHIC and LHC are so-called transport coefftsi shear and bulk viscosities as
well as heavy and light quark diffusion coefficients. Be@aofstrong interactions, these quantities
need to be determined by numerical lattice Monte Carlo satians. This represents a challenging
problem, given that numerical simulations are carried muclidean signature, whereas transport
coefficients are Minkowskian quantities, necessitatingaalytic continuation [1]. Nevertheless,
the problem is solvable in principle [2], provided thatilzgtsimulations reach a continuum limit
and that short-distance singularities can be subtracfedlf# purpose of this investigation is to
probe the practical feasibility of these steps, by apprioacthe continuum limit for a particular
2-point correlator in pure SU(3) gauge theory, related @vigequark diffusion (cf. eq. (4.1)). An
important ingredient in reaching the continuum limit is Iscsetting, so we start by discussing
issues related to this topic in secs. 2, 3.

2. Improved determination of the SU(3) phase diagram

When SU(3) lattice gauge theory is discretized accordingyiteon’s classic prescription, and
an infinite spatial-volume limit is taken, the theory contatwo parameters: the number of lattice
sites in the temporal direction, denoted Ky, and the lattice coupling, denoted By The phase
diagram in the planeN;, 3) contains a line of first order transitions; for a gividp, the critical
point is denoted bys.. The continuum limit corresponds by — oo, 3. — oo,

Because of computational limitations, lattice simulasievere historically carried out at small
values ofN;. In fact, previous to our studyj. had been reliably determined only fidy = 4 —
12 [4, 5]; for instance, already &t; = 16 the best results available came from a lattice« D&
which does not correspond to the required infinite-volunmétli In addition to simulations, semi-
analytic frameworks have recently been developed for ediig 3. [6, 7], however these may
contain uncontrolled uncertainties.

We have carried out new simulations Mt = 10,12 14,16, in each case with at least two
spatial lattice sizes, denoted b, in the rangeNs > 3N;. The critical point; is determined from
the peak position of the susceptibility related to the Pladyaloop. A uniqueAS = hx (N;/Ns)®
with h ~ 0.07 is employed for infinite spatial-volume extrapolatioRsr illustration we display in
fig. 1(left) our Polyakov loop susceptibility data on ax140? lattice (atNs/N; ~ 2.9) and their
corresponding Ferrenberg-Swendsen reweighting (dermtede curve in the figure). Using the
peak position of this data (the triangle) and a similar detdar a 14x 56° lattice (atNs/N; = 4)

a finite-size extrapolation givg®(N; = 14) = 6.448859).

In fig. 1(right) we display our results for the critical coing for N; = 10, 12, 14 and 16.
Also shown are old results from refs. [4, 5] and the resultsarhi-analytic computations from
refs. [6, 7]. Our results foN; = 10 and 12 agree with the old ones within errors whereas fgetar
N;, B has now been determined relatively reliably for the firsteimEven though our current
estimate aN; = 16 is preliminary B.(N; = 16) ~ 6.550939)), it can be seen that the semi-analytic
calculations miss some of the structure in the data.



Towards the continuum limit in transport coefficient conapioins T. Neuhaus
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Figure 1: Left: Polyakov loop susceptibility, = Vspatial (P?) — (P)?) for a 14x 40° box in pure SU(3)
lattice gauge theory with the Wilson action. Right: Pubdidldata foi3;, from Bielefeld (BI) [4] and Lucini
et al [5], compared with our new data pointshgt= 10,12,14,16. Data from Langelage et al [6] and an
interpolation to the results of Cheng and Tomboulis [7] esgnt semi-analytic studies.

3. Conversion of resultsto physical units

When transport coefficients are measured, then simulatiensarried out a temperature above
the critical temperature (denoted My); for a fixedN¢, this corresponds t > .. For any given
B, it is possible to carry out a corresponding zero-tempegagimulation, on a lattichl?, in order
to measure some physical quantity. Thereby the temperadurbe expressed in terms of a chosen
reference scale; from the results of sec. 2, in turn, theepte scale can be determined in terms
of Te. Expressing everything in units @ may increase the value of the results, given At is
a quantity which allows e.g. to compare many related theorie

Various reference scales have been used in the past. Theradigonal one is the root of the
string tension, denoted byc. The problem is that it is determined from a fit to the larggtatice
asymptotics of a static potential (or its derivative, ttagistforce), but such fits are delicate, because
the correct ansatz needs to be known and also because nmeastgat large distances are subtle.
Quite concretely, some of the numbers cited by various groliy /o = 0.630(5) [4] versus
Tc/+/o = 0.646(3) [5], differ by a value much larger than the statistical error

Another possible scale is the so-called Sommer scale, eghgtg [8]. In this case the scale is
determined from the static force at intermediate distanebg&h removes the need for fitting. The
price to pay is that the discreteness of the lattice hampersneasurement, and an interpolation
together with tree-level improvement is probably neededtable results [8]. A value fap T has
been obtained in ref. [9F T, = 0.749850).

Recently a possible new scale was introduced, denotegfthyf10]. For any giveng, the
lattice configuration is “cooled” through a classical Wildtow until a certain observable reaches a
prescribed value, at tintg. There is no fitting involved, and no interpolatidgtherefore probably
suffers from less systematic uncertainties than the ottede £hoices.
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Figure 2: Left: Continuum extrapolation fapTc. The conversion fronf; to ro/ais based on refs. [11, 12]
and additional new simulations, together with a rationdiditn ref. [13] (inset). The resulyT. = 0.74707)
can be contrasted witfy T. = 0.749850) from ref. [9]. (For comparisons with perturbation theowy\ys =
0.602(48) from ref. [14] yieldsT./Aygs = 1.24(10); ref. [15] suggestsp\ys ~ 0.637(32) which would yield
Te/Nws ~ 1.17(6).) Right: Preliminary results foy/foTc as a function o&?/to.

Considering first the Sommer scale, the data of fig. 1(rigat) lee used for determining the
dimensionless combinatianTc; the results are shown in fig. 2(left). The results displag ¢i-
pected O4°) behaviour and can be extrapolated to the continuum. Werobi&, ~ 0.747Q7)
which agrees with an earlier result from ref. [9] but disglaymuch reduced error.

We also have preliminary estimates fpfigTe, obtained at different lattice extensions from
zero-temperature simulationsit= B.(N; = 4,6,8,12), and shown in fig. 2(right). Increasing the
statistics and number of lattice ensembles hopefully gielkcturate results faytoTe.

4. Application to heavy quark diffusion

Heavy quarks carry a colour charge and, whenever there agedelds present, are subject
to a coloured Lorentz force, which adjusts their velocit@those corresponding to kinetic equilib-
rium (this corresponds to the physics of diffusion). Thrioligear response theory the effectiveness
of the adjustment can be related to a “colour-electric datoe’ [16, 17],

13 <ReTr{U(%;r)gEi(r,0

)
4.1
35 <ReTr[U(% @1
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0)]) |

wheregE; denotes the colour-electric field, the temperature, arld(12; 71) a Wilson line in the
Euclidean time direction. A discretized version of thisretator is shown in fig. 3.

Preliminary lattice measurements of the colour-electdoralator have already been carried
out [18, 19, 20]. The results look promising, hinting at ayaand phenomenologically interest-
ing non-perturbative effect in the diffusion coefficientowever, none of these results contain a
systematic continuum extrapolation. The ultimate goalwfiavestigation is to perform one, by
making use of the results of secs. 2, 3 as well as of new siroofat
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Figure 3: Left: Fat links, thin links and electric fields along the tirdigection (cf. the text). Right: Run
parameters. The valuesfl are obtained through an interpolation/extrapolationastilated in fig. 2(left).
With the value ofrgT; from fig. 2(left), we havel /T. ~ 1.43 forN; = 36.

Our numerical investigations are based on standard &P techniques. We employ the
Wilson gauge action on fine isotropic lattices with latticgmcings down tev 0.015 fm. The
measurement of eq. (4.1) is performed on gauge field configneagenerated using 500 sweeps
between subsequent configurations, guaranteeing thaotligygrations are statistically indepen-
dent. However the correlation function in eq. (4.1) deaeeasapidly witht, and fort ~ % suffers
from a weak signal-to-noise ratio. In order to tackle thiskppem we use a multi-level update
[21, 22] for the part of the operator that includes the eledteld insertions, and link-integration
(“PPR”) [23, 24] for the straight lines between them (thet ‘lfaks” in fig. 3). The table in fig. 3
summarizes the situation witthont labelling the number of statistically independent configians
andNsitthe number of additional “multilevel” updates. As demoatsd in fig. 4, these techniques
suffice to yield a signal.

The lattice sizes of our simulations, corresponding to gonatureT ~ 1.43T;, substantially
exceed those of earlier simulations [18, 19, 20], which Yag = 24 x 64°. Due to the increased
number of multilevel updates we focussed on lattices withgpect ratiocNs/N; = 4 (cf. the table
in fig. 3), which was the optimal choice given the availablenpatational resources. However,
volume-scaling checks have been performed at the smadksts/ofN;.

After tree-level improvement [8, 22] our measurementsdygetorrelator denoted i imp(T),
which is furthermore multiplied by a perturbative renorination factorZpe [20]. Normalizing
the resulting correlator to

o4 [cog(mT) 1
Grom(TT) = 7T sin*(rrT) +?>sir12(rrrT) ’ (4-2)

the data are displayed in fig. 5. They exhibit a clear enharotmver the next-to-leading order
(NLO) prediction from ref. [25]. A continuum extrapolatisamains to be carried out.

5. Outlook

The Euclidean correlator of eq. (4.1) is related to a comedmg spectral functiope through

(1) =Jo df;’pE )Coszlﬁ% Once a perturbatively determined short-distance diverges
subtracted from a continuuTm-extrapoIat@g( 1), the remainder may be subjected to an analytic
continuation algorithm [2, 3] or a well-motivated modeldiin refs. [19, 20]. In particular, a “mo-
mentum diffusion coefficient”, often denoted ky can be obtained from = Iimwﬁoﬁpif)(“)). In
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Figure 4: Left: Error reduction forGe(t = 12a) in a 36x 144° box with techniques described in the
text. For 77 statistically independent configurations weedaine the non-improved observalbkegkxis) and
the fully improved oney-axis). A dotted horizontal line and a triangle mark the agerof the improved
observable. Right: The statistically improved correlae(7). The inset shows the ratio of non-improved
over improved statistical errors, denotedRy An error reduction by a factd?, ~ ¢(10*) can be achieved.

the non-relativistic limit (i.e. foM > nT, whereM stands for a heavy quark mass) the corre-
sponding “diffusion coefficient” is given b = 2T2/k. It will be interesting to see whether pre-
liminary estimates of the diffusion coefficient [19, 20] da@ confirmed after a continuum limit,
and how well the results perform in phenomenological coispas with LHC heavy ion data (cf.
e.g. ref. [26]). Of course, taking the continuum limit pleys important role in the extraction of
the light-quark diffusion coefficient and electrical cootivity as well [27, 28].
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