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1. Introduction

The computation of real-time observables represents a common challenge within lattice calcu-
lations and other Euclidean approaches to Quantum Field Theory where an analytic continuation
from imaginary to real time is needed for dynamic processes especially with timelike momentum
transfer. This technical difficulty arises already in the vacuum but is even more severe at finite tem-
perature where these continuations are based on discrete Matsubara frequencies and hence require
additional boundary conditions for uniqueness [1, 2]. Even with the analytic structure completely
fixed, however, the reconstruction of spectral functions from discrete numerical (i.e., noisy) data on
Euclidean correlation functions, for example, is an ill-posed inverse problem. Maximum entropy
methods (MEM) [3 – 7], Padé approximants [8 – 11], or very recently also a standard Tikhonov
regularization [12] have been proposed to deal with this problem. They all work best at low tem-
peratures when the density of Matsubara modes is sufficiently large, but they all break down when
the Euclidean input data is not sufficiently dense and precise.

Therefore any approach that can deal with the analytic continuation explicitly is highly desir-
able. In this work we employ the Functional Renormalization Group (FRG) which has proven very
useful in nonperturbative applications in quantum field theory and statistical physics, see e.g. [13 –
19] for introductions. Within this framework the analytic continuation can be achieved already
on the level of the flow equation, as proposed in [20, 21] and [22]. In addition to its simplicity
our approach enjoys a number of particular advantages: First of all, it is thermodynamically con-
sistent in that the spacelike limit of zero external momentum in the 2-point correlation functions
agrees with the curvature or screening masses as extracted from the thermodynamic grand potential
[20]. Secondly, it satisfies the physical Baym-Mermin boundary conditions at finite temperature [1]
whose implementation here proceeds essentially as in a simple one-loop calculation [23]. Finally,
although we focus on mesonic spectral functions obtained from the quark-meson model [24, 25] in
this work it can be extended to calculate also quark and gluonic spectral functions as an alternative
to analytically continued Dyson-Schwinger equations (DSEs) [26], or to using MEM on Euclidean
FRG [27] or DSE results [28 – 30].

2. Flow Equations for the Quark-Meson Model

Within the FRG approach pioneered by Wetterich [31] the effective action is generalized to the
scale dependent effective average action Γk via the introduction of a regulator function Rk which
serves as an infrared (IR) regulator with an associated RG scale k. This regulator has then to be
removed by taking k from the ultraviolet (UV) cutoff scale Λ down to zero. The scale dependence
of the effective average action is governed by an exact one-loop equation involving full scale- and
field-dependent propagators which takes the form

∂kΓk =
1
2 STr[∂kRk(Γ

(2)
k +Rk)

−1], (2.1)

where Γ
(2)
k denotes the second functional derivative of the effective average action, and the super-

trace includes internal and spacetime indices, the functional trace, typically in momentum space,
and the minus sign with degeneracy factor for fermion loops, see Fig. 1 for a diagrammatic repre-
sentation.
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Figure 1: (color online) Diagrammatic representation of the flow equation for the effective action. Dashed
(solid) lines represent bosonic (fermionic) propagators and circles the respective regulator insertions ∂kRk.

In the following we employ the quark-meson model, which serves as a low energy effective
model for QCD with Nf = 2 light quark flavors and yields the following Ansatz for the effective
average action, in the lowest order derivative expansion where only the effective potential carries a
scale dependence,

Γk[ψ̄,ψ,φ ] =
∫

d4x
{

ψ̄
(
/∂ +h(σ + i~τ ·~πγ5)

)
ψ + 1

2(∂µ
~φ)2 +Uk(φ

2)− cσ

}
, (2.2)

with φi = (σ ,~π)i and φ 2 =σ2+~π2. The effective potential Uk(φ
2) allows for spontaneous breaking

of chiral symmetry while the explicit breaking term cσ accounts for a non-vanishing pion mass.
Inserting Eq. (2.2) into the flow equation for the effective action, Eq. (2.1), evaluated for

constant fields and using the three-dimensional analogues of the LPA-optimized regulator functions
[32], gives for the flow equation of the effective potential

∂kUk =
1
2 I(1)σ + 1

2(N−1)I(1)π −NcNfI
(1)
ψ . (2.3)

Therein the loop functions I(i)α are defined as

I(i)α = Trq
[
∂kRk(q)Gα,k(q)i] , (2.4)

with α ∈ {σ ,π,ψ}, Gα,k(q) the full (scale-dependent) Euclidean propagator and Rk(q) chosen
appropriately for bosonic and fermionic fields. The flow equations for the inverse mesonic 2-point
functions are now obtained by taking two functional derivatives of Eq. (2.1),

∂kΓ
(2)
σ ,k = JB

σσ (Γ
(0,3)
σσσ )

2 +(N−1)JB
ππ(Γ

(0,3)
σππ )

2− 1
2 I(2)σ Γ

(0,4)
σσσσ − (N−1)

2 I(2)π Γ
(0,4)
σσππ −2NcNfJF

σ , (2.5)

∂kΓ
(2)
π,k = (JB

σπ + JB
πσ )(Γ

(0,3)
σππ )

2− 1
2 I(2)σ Γ

(0,4)
σσππ − 1

2 I(2)π (Γ
(0,4)
ππππ +(N−2)Γ(0,4)

πππ̃π̃
)−2NcNfJF

π , (2.6)

with π 6= π̃ ∈ {π1,π2,π3} and N = 4 in our O(4) case, see Fig. 2 for a graphical representation.
The bosonic and fermionic loop functions are defined as

JB
αβ

(p) =Trq
[
∂kRk(q)Gα,k(q− p)Gβ ,k(q)

2] , (2.7)

JF
α (p) =Trq

[
∂kRk(q)Gψ,k(q)Γ

(2,1)
ψ̄ψα

Gψ,k(q− p)Γ(2,1)
ψ̄ψα

Gψ,k(q)
]
, (2.8)

for α ∈ {σ ,π} and at external momentum p. All vertices are taken to be momentum independent in
our present truncation and are obtained by appropriate functional derivatives of the effective action
for the quark-meson model, given by Eq. (2.2).
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Figure 2: (color online) Diagrammatic representation of the flow equations for the inverse mesonic 2-point
functions. Three-point vertices are represented by triangles, four-point vertices by squares.

3. Analytical Continuation and Numerical Implementation

We employ the following two-step procedure for the analytic continuation from imaginary
to real time: Once the sum over the Matsubara frequencies in the flow equations for the 2-point
functions is performed, we first exploit the periodicity of the bosonic and fermionic occupation
numbers along the imaginary direction of the complex energy plane, i.e. with respect to discrete
Euclidean external Matsubara modes p0 = 2nπT ,

nB,F(E + ip0)→ nB,F(E), (3.1)

cf. [37] for explicit expressions of the flow equations. In the second step, the retarded 2-point
functions are then obtained from their Euclidean counterparts via the analytic continuation

Γ
(2),R(ω,~p) = lim

ε→0
Γ
(2),E(p0 =−i(ω + iε),~p), (3.2)

where we keep a small but finite value of ε = 1MeV in our numerical implementation and con-
sider the case of vanishing spatial momentum, ~p = 0. This substitution of the discrete Euclidean
external p0 by the continuous real frequency ω is done explicitly within the flow equation, before
the integration of the RG scale k. Because of the one-loop structure of the flow equations together
with the unregulated Matsubara sums, the correctness of this analytic continuation in the complex
frequency plane follows directly from the corresponding one-loop formulae for the polarization
functions in thermal field theory [23].

Finally, the spectral function is given by the discontinuity of the propagator and can hence be
expressed in terms of the imaginary part of the retarded propagator as,

ρ(ω) =− 1
π

ImΓ(2),R(ω)(
ReΓ(2),R(ω)

)2
+
(
ImΓ(2),R(ω)

)2 . (3.3)

In order to numerically solve the flow equations for the effective potential and for the real and
imaginary parts of the 2-point functions we take the effective potential at the UV scale to be of the
form

UΛ(φ
2) = 1

2 m2
Λφ

2 + 1
4 λΛ(φ

2)2 , (3.4)

where the chosen values for the parameters and the corresponding values for observables in the IR
are summarized in Table 1. For further details on our numerical implementation see [37].
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Λ/MeV mΛ/Λ λΛ c/Λ3 h fπ /MeV mπ /MeV mσ /MeV mψ /MeV
1000 0.794 2.00 0.00175 3.2 93.5 137 509 299

Table 1: Employed parameter set and obtained vacuum values for observables in the IR, i.e. kIR ≈ 20MeV.

4. Results

Since the pion and sigma meson spectral functions are strongly affected by the possible de-
cay processes, which in turn depend on the masses of the involved particles, we first turn to a
discussion of the temperature-dependence of the meson screening masses and the quark mass, cf.
Fig. 3. One clearly observes the expected crossover behavior with a pseudo-critical temperature of
Tc ≈ 175MeV as obtained from the maximum of the chiral susceptibility χσ ≡ 1/m2

σ , see [33, 34]
and [35] for a comparison of different definitions of pseudo-critical temperatures. At higher temper-
atures the sigma and pion mass become degenerate, while the quark mass and the order parameter
drastically decrease, indicating the progressing restoration of chiral symmetry.

We now turn to a discussion of the pion and sigma meson spectral function which are shown
as a function of external energy at different temperatures in Fig. 4. At T = 10MeV the spectral
functions closely resemble the vacuum structure already observed in previous studies, cf. [21, 36].
For external energies larger than 2mψ the decay of an (off-shell) pion into a quark anti-quark pair,
π ′→ ψ̄ψ , becomes energetically possible, giving rise to an increase of the pion spectral function
at ω ≥ 2mψ ≈ 600MeV. The dominant channel affecting the sigma spectral function is the decay
into two pions, σ ′→ ππ , which is possible for ω ≥ 2mπ and renders the sigma meson unstable.

At higher temperatures the process π ′π → σ , which describes an off-shell pion and a pion of
the heat bath going into a sigma meson, contributes to the pion spectral function for ω ≤mσ −mπ .
At T = 150MeV this results in modifications of ρπ near ω ≈ 100MeV while the sigma spectral
function develops a sharp peak at ω ≈ 280MeV, as expected near the chiral crossover, where
neither the decay into two pions nor into two quarks is energetically possible. When increasing the
temperature further, the quarks become the lightest degrees of freedom considered here, providing
decay channels for both the pion and the sigma meson down to small external energies, leading to a
broadening of the pronounced peaks in the spectral functions which eventually become degenerate.
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Figure 3: (color online) Meson masses, quark mass and chiral order parameter vs. temperature.
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Figure 4: (color online) Sigma and pion spectral function vs. external energy at different temperatures.

5. Summary and Outlook

We have presented a method to obtain spectral functions at finite temperature from the Func-
tional Renormalization Group, based on previous studies in the vacuum [21, 36]. The method
involves an analytic continuation from imaginary time to real time performed on the level of the
flow equations and has been illustrated here for mesonic spectral functions obtained from the quark-
meson model. Our approach is comparably simple and can be extended in several ways, for ex-
ample by including finite quark chemical potential which will allow to study spectral functions
over the whole range of the phase diagram, including critical regimes, cf. [37]. Additionally, an
extension to non-vanishing external spatial momenta is possible and will allow for the calculation
of transport coefficients such as the shear viscosity.

Acknowledgments

The authors thank Kazuhiko Kamikado and Jan Pawlowski for discussions and work on re-
lated subjects. This work was supported by the Helmholtz International Center for FAIR within the
LOEWE initiative of the State of Hesse. L.v.S. is furthermore supported by the European Commis-
sion, FP-7-PEOPLE-2009-RG, No. 249203, N.S. by the grant ERC-AdG-290623, and R.-A.T. by
the Helmholtz Research School for Quark Matter Studies, H-QM.

6



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
4
5
7

Finite-Temperature Spectral Functions from the FRG Ralf-Arno Tripolt

References

[1] G. Baym and N. D. Mermin, J. Math. Phys. 2 (1961) 232.

[2] N. P. Landsman and C. G. van Weert, Phys. Rept. 145 (1987) 141.

[3] M. Jarrell and J. E. Gubernatis, Phys. Rept. 269 (1996) 133.

[4] M. Asakawa et al. Prog. Part. Nucl. Phys. 46 (2001) 459 [hep-lat/0011040].

[5] F. Karsch et al. Phys. Lett. B530 (2002) 147 [hep-lat/0110208].

[6] S. Datta et al. Phys. Rev. D69 (2004) 094507 [hep-lat/0312037].

[7] H. T. Ding et al., Phys. Rev. D86 (2012) 014509 [hep-lat/1204.4945].

[8] H. J. Vidberg and J. W. Serene, J. Low Temp. Phys. 29 (1977) 179 [hep-lat/0011040].

[9] R. Schmidt and T. Enss, Phys. Rev. A 83 (2011) 063620 [cond-mat/1104.1379].

[10] N. Dupuis, Phys. Rev. A 80 (2009) 043627 [cond-mat/0907.2779].

[11] A. Sinner et al., Phys. Rev. Lett. 102 (2009) 120601 [cond-mat/0811.0624].

[12] D. Dudal, O. Oliveira and P. J. Silva, (2013) hep-lat/1310.4069.

[13] J. Berges, N. Tetradis, and C. Wetterich, Phys. Rept. 363 (2002) 223 [hep-ph/0005122].

[14] J. Polonyi, Central Eur. J. Phys. 1 (2003) 1 [hep-th/0110026].

[15] J. M. Pawlowski, Annals Phys. 322 (2007) 2831 [hep-th/0512261].

[16] B.-J. Schaefer and J. Wambach, Phys. Part. Nucl. 39 (2008) 1025 [hep-ph/0611191].

[17] H. Gies, Lect. Notes Phys. 852 (2012) 287 [hep-ph/0611146].

[18] P. Kopietz, L. Bartosch and F. Schutz, Lect. Notes Phys. 798 (2010) 1.

[19] J. Braun, J. Phys. G39 (2012) 033001 [hep-ph/1108.4449].

[20] N. Strodthoff et al., Phys. Rev. D85 (2012) 074007 [hep-ph/1112.5401].

[21] K. Kamikado et al., Phys. Lett. B718 (2013) 1044 [hep-ph/1207.0400].

[22] S. Floerchinger, JHEP 05 (2012) 021 [hep-th/1112.4374].

[23] A. K. Das, Finite temperature field theory, World Scientific, 1997.

[24] D. U. Jungnickel, and C. Wetterich, Phys. Rev. D53 (1996) 5142 [hep-ph/9505267].

[25] B.-J. Schaefer, and J. Wambach, Nucl. Phys. A757 (2005) 479 [nucl-th/0403039].

[26] S. Strauss et al., Phys. Rev. Lett. 109 (2012) 252001 [hep-ph/1208.6239].

[27] M. Haas, L. Fister and J. M. Pawlowski, (2013) hep-ph/1308.4960].

[28] D. Nickel, Annals Phys. 322 (2007) 1949 [hep-ph/0607224].

[29] J. A. Mueller, C. S. Fischer and D. Nickel, Eur. Phys. J. C70 (2010) 1037 [hep-ph/1009.3762].

[30] S.-x. Qin and D. H. Rischke, Phys.Rev. D88 (2013) 056007 [nucl-th/1304.6547].

[31] C. Wetterich, Phys. Lett. B301 (1993) 90.

[32] D. F. Litim, Phys. Rev. D64 (2001) 105007 [hep-th/0103195].

[33] B.-J. Schaefer, and J. Wambach, Phys. Rev. D75 (2007) 085015 [hep-ph/0603256].

[34] R.-A. Tripolt, J. Braun, B. Klein, and B.-J. Schaefer, (2013) hep-ph/1308.0164.

[35] N. Strodthoff, and L. von Smekal, (2013) hep-ph/1306.2897.

[36] K. Kamikado, N. Strodthoff, L. von Smekal, and J. Wambach, (2013) hep-ph/1302.6199.

[37] R.-A. Tripolt, N. Strodthoff, L. von Smekal, and J. Wambach, (2013) hep-ph/1311.0630.

7


