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1. Introduction

The calculation of the leading order hadronic contributionof the muon anomalous magnetic
moment,ahad

µ , is one of the prime targets of lattice QCD activities presently. However, in such a
computation there is a generic problem to reach small momenta, dominating the weight function,
on the lattice which are needed to evaluate the hadronic vacuum polarization (HVP) function from
which ahad

µ is derived. Present approaches to circumvent this problem [1, 2, 3, 4, 5, 6, 7, 8] design
appropriate fit functions for the HVP function, employ twisted boundary conditions, take model
independent Padé polynomials or compute the derivative of the vector current correlation function.

An alternative approach which we will discuss here is to use the method ofanalytic continua-
tion [9] which is closely related to the work in refs. [10, 11]. This method allows, in principle, to
compute the HVP function at small space-like momenta and even at time-like momenta. We will
show the feasibility of the method here at the examples ofahad

µ and the Adler function. However,
it is clear that the analytic continuation method is applicable for a much larger class of observ-
ables such as momentum dependent form factors and quantities related to scattering processes or
resonances.

2. Method of analytic continuation

In the analytic continuation method the HVP function is computed through the Fourier trans-
formation of the vector correlation function,

Π̄(K2)(KµKν −δµνK2) =

∫

dt eωt
∫

d3~x ei~k~x 〈Ω|T{JE
µ (~x, t)J

E
ν (~0,0)}|Ω〉 (2.1)

whereJE
µ (X) is the electromagnetic current,K = (~k,−iω) with ~k the spatial momentum andω

the photon energy. The advantage of this approach is thatω can assume continuous values for
K2 =−ω2+~k2 and thus allows to cover space-like and time-like momentum regions. In particular,
it becomes possible to reach small momenta and even zero momentum. An important condition
to be satisfied is−K2 = ω2−~k2 < M2

V , with MV the invariant mass of the lowest energy state in
the vector channel, orω < Evector. In [10, 9] a demonstration of the method has been given. In
[9] also the details of the calculation of the HVP function through the conserved vector correlation
functions and a classification through the momenta~k= (2π/L)~n has been provided.

In practical calculations, a lattice with finite extentT has to be used leading thus to possible
finite size effects. In addition, fort & T/2 the vector correlator becomes very noisy. In order to
obtain a large signal to noise ratio, a cut int with a choice oftmax= η(T/2) has to be made for
which we have fixedη = 3/4. In the following, we will assume that fort > tmax the ground state
dominates leading, with a continuous photon energy, to a suppression factorexp[−(Evector−ω) ·

tmax].

3. Results for the HVP

For our results we use gauge field ensembles withNf = 2 andNf = 2+ 1+ 1 flavours of
maximally twisted mass sea fermions [12, 13] employing two values of the lattice spacing, various
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volumes and a number of quark masses reaching pion masses as low as 210 MeV. We refer to
ref. [9] for further details of the ensembles used.

3.1 Vacuum polarization and Adler functions

As a first example of the application of the analytic continuation method we will discuss here
the evaluation of the Adler function. The definition of the vacuum polarization function via analytic
continuation presented in the previous section from lattice data can be used directly to extract the
additively renormalized vacuum polarization function. When extrapolated to the physical point,
this allows for an immediate comparison with dispersion relation results available via experimental
data for the ratioR(s), involving thee+e− cross section to hadrons. Furthermore, with the knowl-
edge ofR(s) it is also possible to compute the Adler function which can then be compared to a
lattice calculation. To this end, we use

Π̄(K2) =
1
12

tmax/a

∑
s

∑
~x

〈Ji(tx,~x)Ji(ty,~y)〉Ps(K̂
2/Λ2) (3.1)

with (Chebyshev based) polynomialsPs that can be derived from the Fourier transformation of
eq. (2.1). For any finiteT we thus have a representation of the polarization function as a sum
over polynomials, which are summed up to some maximal ordertmax as explained above. This
reproduces the lattice data on the points in momentum space,but the polynomials can also be
evaluated for any choice of̂K2. In particular, we can take the limit̂K2 → 0 and chooseK̂2 =

−Ω̂2 < 0 to smoothly connect the space-like and (small) time-like momentum region.
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Figure 1: left panel: The renormalized vacuum polarization functionfrom our lattice data (a ≈

0.078fm,V = (2.5fm)3) together with a comparison to the dispersion relation datafrom [14]. right panel:
The Adler function as derived from the lattice data; for illustration the upper summation limit was chosen
maximal, i.e.tmax/a= T/2a−1= 31 and the spatial momentum is set to 0.

Here we compare our results, which are obtained at a single lattice spacing (a≈ 0.078fm) with
the results from [14] provided in the packagealphaQED. At the stage of this first analysis, which
is shown in the left panel of fig. 1 we find compelling agreementof results using the dispersion
relation forR(s) and lattice QCD results. With the known functional dependence onK̂2 of thePn

of eq. (3.1) we can take the derivative w.r.t.K̂2 analytically and can also derive the Adler function
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from the lattice data. The result based on the same modified extrapolation of ref. [4] is shown in
the right panel of Figure 1. Details of the limittmax/a→ ∞ as well as generalizations to different
choices of non-zero momentum components will be discussed in a forthcoming publication.

3.2 Anomalous magnetic moment of the muon

Having obtained the HVP function, besides the Adler function a number of physical observ-
ables can be computed, see, e.g., Ref.[15]. Here we will focus on the leading-order HVP correction
to the muon anomalous magnetic moment,ahvp

µ , as an example to study the practical feasibility of
the proposed analytic continuation method.

In lattice QCDahvp
µ can be calculated through

ahvp
µ = α2

∫ ∞

0
dK2 1

K2 f

(

K2

m2
µ

)

(Π(K2)−Π(0)) , (3.2)

whereα is the fine structure constant,mµ is the muon mass, andf (K2/m2
µ) is a known function [1].

To control the chiral extrapolation, we use a modified definition of ahvp
µ proposed in Refs. [4, 15],

ahvp
µ̄ = α2

∫ ∞

0
dK2 1

K2 f

(

K2

m2
µ

H2
phys

H2

)

(Π(K2)−Π(0)) , (3.3)

with H = MV , i.e. themeasuredvector meson mass on the lattice. When the pion mass approaches
its physical value, this vector meson mass becomes the physical ρ-meson mass,MV = Mρ . Then
alsoH = Hphys and the modified definition,ahvp

µ̄ reproduces the value ofahvp
µ at the physical pion

mass.
In the analytic continuation method, we can calculate the HVP function for a continuous mo-

mentum region 0< K2 < K2
max, with K2

max= ∑i=x,y,zK̂2
i being the squared spatial momentum. In

practice we split Eq. (3.3) into three parts:

ahvp
µ̄ = a(1)µ̄ +a(2)µ̄ +a(3)µ̄ ,

a(1)µ̄ = α2
∫ K2

max

0
dK2 1

K2 f

(

K2

m2
µ

H2
phys

H2

)

(Π(K2)−Π(0)) ,

a(2)µ̄ = α2
∫ ∞

K2
max

dK2 1
K2 f

(

K2

m2
µ

H2
phys

H2

)

(Π(K2
max)−Π(0)) ,

a(3)µ̄ = α2
∫ ∞

K2
max

dK2 1
K2 f

(

K2

m2
µ

H2
phys

H2

)

(Π(K2)−Π(K2
max)) . (3.4)

In Eq. (3.4),a(1)µ̄ +a(2)µ̄ can be calculated directly using the analytic continuationmethod. Similar to

the previous section, we can calculatea(1)µ̄ anda(2)µ̄ up to the value oftmax= η(T/2) with η = 3/4
and estimate the finite-size effects usingΠ̄(K2; t > tmax).

The evaluation ofa(3)µ̄ still requires a parametrization of̄Π(K2). This will bring in some
model dependence in our analysis, which, however, is a smalleffect, since the total contribution
of a(3)µ̄ only amounts to a few percent in case of momentum modes|~n|2 = 1,2,3 where~n classifies
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Figure 2: In this figure, the open symbols represent results from the analytic continuation method where
we average over|n|2 = 1,2,3. In the upper panel we use the range−tmax≤ t ≤ tmax only. The lower panel
shows the results corrected for the estimated FSE. Our earlier data from the standard method of computing
ahvp

µ are represented by filled symbols.

the momenta~k = (2π/L)~n used in eq. (2.1). The exact parametrization ofΠ̄(K2) used in this
calculation can be found in the Appendix of ref. [9].

In Fig. 2 we showahvp
µ̄ as a function of the squared pion mass. The results ofahvp

µ̄ calculated
using Eq. (3.4) are shown by the empty symbols. These resultshave been averaged among various
momentum modes (|~n|2 = 1,2,3) and polarization directions. For comparison the resultsdeter-
mined using our conventional approach of parameterizing the HVP function in the full momentum
range are shown in the same figure, represented by the filled symbols. In the upper panel we show
the results ofahvp

µ̄ (tmax), which are calculated using the correlatorCµν(~k, t) covering the range of

−tmax≤ t ≤ tmax. We look at the finite-size effects inahvp
µ̄ (tmax) by comparing the results for dif-

ferent volumes. There are also some deviations between the results from the analytic continuation
method and the standard parametrization method. To check for the finite-size effects, we evaluate
the contribution toahvp

µ̄ fromCµν(~k, t) at |t|> tmax leading to a correctionahvp
µ̄ (t > tmax). The corre-

sponding results forahvp
µ̄ (tmax)+ahvp

µ̄ (t > tmax) are shown in the lower panel of Fig. 2. These results
are consistent now among different lattice volumes. Besides this, the results from the analytic con-
tinuation method also agree with the ones from the standard parametrization method. As can be
seen, the results from the analytic continuation method forahvp

µ̄ show larger fluctuations than the
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standard ones. However, the analytic continuation method has the conceptual advantage that in the
region of lowK2 the parametrization of̄Π(K2) can be avoided. Thus, we think that presently the
analytic continuation method can serve as a valuable cross-check of the standard method to analyze
the vacuum polarization function.

4. Conclusions and Outlook

In this proceedings contribution we discussed the analyticcontinuation method which, in prin-
ciple, can provide information on the small momentum regionfor the vacuum polarization function
or form factors in lattice QCD. In addition, it allows to access the space- and time-like momentum
regions which in turn opens the possibility to compute scattering processes and resonances as an
alternative to the finite size method of refs. [16, 17, 18]. Here we have given the examples of the
Adler function and the anomalous magnetic moment of the muonahvp

µ which we calculated by the
analytic continuation method. When comparing to the standard method to computeahvp

µ we found
full agreement, but the analytic continuation method leadsto noisier results. Still, we believe that
the analytic continuation method is a valuable alternativewhich has, moreover, the potential to
address other quantities where small or zero momenta are needed.
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