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1. Introduction

The calculation of the leading order hadronic contributafrthe muon anomalous magnetic
moment,aﬂad, is one of the prime targets of lattice QCD activities prélgerHowever, in such a
computation there is a generic problem to reach small mamelominating the weight function,
on the lattice which are needed to evaluate the hadroniawaqolarization (HVP) function from
which a',}ad is derived. Present approaches to circumvent this problem, [3, 4, 5, 6, 7, 8] design
appropriate fit functions for the HVP function, employ tweidtboundary conditions, take model
independent Padé polynomials or compute the derivativieeofé&ctor current correlation function.

An alternative approach which we will discuss here is to tisemtethod o&nalytic continua-
tion [9] which is closely related to the work in refs. [10, 11]. $hnhethod allows, in principle, to
compute the HVP function at small space-like momenta and avéme-like momenta. We will
show the feasibility of the method here at the exampldﬂﬁﬁand the Adler function. However,
it is clear that the analytic continuation method is appdieafor a much larger class of observ-
ables such as momentum dependent form factors and quamétaed to scattering processes or
resonances.

2. Method of analytic continuation

In the analytic continuation method the HVP function is coreol through the Fourier trans-
formation of the vector correlation function,

M(K2) (KyKy — 8,K2) = /dt e"ﬁ/d?’i % (O[T {35 (%,1)IE(,0)}|Q) 2.1)

whereJE(X) is the electromagnetic curreri, = (k, —iw) with k the spatial momentum and

the photon energy. The advantage of this approach isahedn assume continuous values for
K2 = —w?+ k2 and thus allows to cover space-like and time-like momentgions. In particular,

it becomes possible to reach small momenta and even zero mbame An important condition

to be satisfied is-K2 = w? — k% < M2, with My the invariant mass of the lowest energy state in
the vector channel, aw < Eyector In [10, 9] @ demonstration of the method has been given. In
[9] also the details of the calculation of the HVP functionailigh the conserved vector correlation
functions and a classification through the moménta(2rt/L)f has been provided.

In practical calculations, a lattice with finite extehthas to be used leading thus to possible
finite size effects. In addition, fdr=> T /2 the vector correlator becomes very noisy. In order to
obtain a large signal to noise ratio, a cuttiwith a choice oftnax=n(T/2) has to be made for
which we have fixed) = 3/4. In the following, we will assume that far> tmax the ground state
dominates leading, with a continuous photon energy, to aresgion factoexg—(Evector— W) -

tmax] .

3. Resaultsfor theHVP

For our results we use gauge field ensembles With= 2 andN; = 2+ 1+ 1 flavours of
maximally twisted mass sea fermions [12, 13] employing tatmes of the lattice spacing, various
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volumes and a number of quark masses reaching pion massew as 210 MeV. We refer to
ref. [9] for further details of the ensembles used.

3.1 Vacuum polarization and Adler functions

As a first example of the application of the analytic contiimramethod we will discuss here
the evaluation of the Adler function. The definition of thewam polarization function via analytic
continuation presented in the previous section from kattiata can be used directly to extract the
additively renormalized vacuum polarization function. &dhextrapolated to the physical point,
this allows for an immediate comparison with dispersioatieh results available via experimental
data for the ratidz(s), involving thee*e™ cross section to hadrons. Furthermore, with the knowl-
edge ofR(s) it is also possible to compute the Adler function which caentibe compared to a
lattice calculation. To this end, we use

_ tmax/a R
K = 15 3 3 (360 30,9) PR/ 31)

with (Chebyshev based) polynomidfs that can be derived from the Fourier transformation of
eq. (2.1). For any finitdl we thus have a representation of the polarization funct®m@a gum
over polynomials, which are summed up to some maximal drggras explained above. This
reproduces the lattice data on the points in momentum spatethe polynomials can also be
evaluated for any choice d€2. In particular, we can take the lim€2 — 0 and choos&? =
~02<0to smoothly connect the space-like and (small) time-likemantum region.
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Figure 1: left panel: The renormalized vacuum polarization functivpom our lattice data & ~
0.078fm V = (2.5fm)®) together with a comparison to the dispersion relation &ata [14]. right panel:
The Adler function as derived from the lattice data; forstiation the upper summation limit was chosen
maximal, i.etmax/a= T /2a— 1= 31 and the spatial momentum is set to 0.

Here we compare our results, which are obtained at a sinttjleelapacingd ~ 0.078 fm) with
the results from [14] provided in the packagihaQED At the stage of this first analysis, which
is shown in the left panel of fig. 1 we find compelling agreemantesults using the dispersion
relation forR(s) and lattice QCD results. With the known functional depergeonK? of the R,
of eq. (3.1) we can take the derivative w.K£ analytically and can also derive the Adler function
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from the lattice data. The result based on the same modifigdptation of ref. [4] is shown in
the right panel of Figure 1. Details of the linitax/a — o as well as generalizations to different
choices of non-zero momentum components will be discussadarthcoming publication.

3.2 Anomalous magnetic moment of the muon

Having obtained the HVP function, besides the Adler funtionumber of physical observ-
ables can be computed, see, e.g., Ref.[15]. Here we wilsfoauthe leading-order HVP correction
to the muon anomalous magnetic momaﬂY?, as an example to study the practical feasibility of
the proposed analytic continuation method.

In lattice QCDay, P can be calculated through

00 2
_aZ/O dKzéf (%) (N(K?) —-n(0)), (3.2)

wherea is the fine structure constamty, is the muon mass, anfdK?/n,) is a known function [1].

To control the chiral extrapolation, we use a modified da&inibf aﬂ"p proposed in Refs. [4, 15],

a2 [ aK <mz |3“2y3> (M(K2) - N(0), (3.3)

with H = My, i.e. themeasuredrector meson mass on the lattice. When the pion mass apg®ach
its physical value, this vector meson mass becomes thegathysimeson masdyly = M,. Then
alsoH = Hpnys and the modified dEfinitiOi’HEVp reproduces the value @, at the physical pion
mass.

In the analytic continuation method, we can calculate thé®Huhction for a continuous mo-
mentum region O< K? < K2, with K2, = Si_ xyzK being the squared spatial momentum. In
practice we split Eg. (3.3) into three parts:

hvp (1), (2, 3
ay’ =a; +a; +a; ,

'Kr%ax H
af;l) — az/o dK? f (mz Shzys> (N(K?) —1(0)),

o H2
2 _ 2 2 phys 2
a; =a K%ade f <m2 2 ) (MN(Kga) —M(0))

o H
40 = a” [ aK gt <mz ﬂ“zys> (N(K?) ~ M (K2) (3.4)

max

In Eq. (3.4), a(l) (2) can be calculated directly using the analytic continuatieihod. Similar to

the previous sectlon we can calculaﬁe) anda 2) up to the value ofnax=n(T/2) with n = 3/4
and estimate the finite-size effects usmgK?; t > tmax)-

The evaluation ohfl) still requires a parametrization cﬁ(Kz). This will bring in some
model dependence in our analysis, which, however, is a sffalit, since the total contribution
of a§’> only amounts to a few percent in case of momentum m¢it|és-= 1,2, 3 wherefi classifies
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Figure 2: In this figure, the open symbols represent results from tladytao continuation method where
we average oven|? = 1,2,3. In the upper panel we use the ranggax < t < tmax only. The lower panel
shows the results corrected for the estimated FSE. Oueeddta from the standard method of computing
aZVp are represented by filled symbols.

the moment& = (2r1/L)f used in eq. (2.1). The exact parametrization K ?) used in this

calculation can be found in the Appendix of ref. [9].
h

In Fig. 2 we shova;” as a function of the squared pion mass. The resul#‘@fcalculated
using Eg. (3.4) are shown by the empty symbols. These rdsats been averaged among various
momentum modes|i{|® = 1,2,3) and polarization directions. For comparison the resider-
mined using our conventional approach of parameteriziagH¥P function in the full momentum
range are shown in the same figure, represented by the filleddg. In the upper panel we show
the results oh%"p(tmax), which are calculated using the correla@;f\,(ﬁ,t) covering the range of
—tmax < t < tmax. We look at the finite-size effects H%"p(tmax) by comparing the results for dif-
ferent volumes. There are also some deviations betweersés from the analytic continuation
method and the standard parametrization method. To chedkddinite-size effects, we evaluate

the contribution t(a%"p from C,N(R,t) at|t| > tmaxleading to a correctioa%"p(t > tmax). The corre-

sponding results f(m%"p(tmax) +a;}"p(t > tmax) are shown in the lower panel of Fig. 2. These results
are consistent now among different lattice volumes. Beadidis, the results from the analytic con-
tinuation method also agree with the ones from the standarahpetrization method. As can be
seen, the results from the analytic continuation methoch%lﬁ”r show larger fluctuations than the
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standard ones. However, the analytic continuation metlasdhre conceptual advantage that in the
region of lowK? the parametrization dﬁ(Kz) can be avoided. Thus, we think that presently the
analytic continuation method can serve as a valuable atossk of the standard method to analyze
the vacuum polarization function.

4. Conclusions and Outlook

In this proceedings contribution we discussed the anadgiitinuation method which, in prin-
ciple, can provide information on the small momentum redasrthe vacuum polarization function
or form factors in lattice QCD. In addition, it allows to assehe space- and time-like momentum
regions which in turn opens the possibility to compute scalt) processes and resonances as an
alternative to the finite size method of refs. [16, 17, 18]rédee have given the examples of the
Adler function and the anomalous magnetic moment of the naﬂk‘ﬁwhich we calculated by the
analytic continuation method. When comparing to the stahdeethod to computa'[,"p we found
full agreement, but the analytic continuation method legadsoisier results. Still, we believe that
the analytic continuation method is a valuable alternatieéch has, moreover, the potential to
address other quantities where small or zero momenta adedee
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