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1. Introduction

Lattice QCD simulations are expected to suffer from frozen topology at small values of the

lattice spacing independent of the quark discretization. The reason is that gauge link configurations

belong to different topological sectors, which are separated by barriers of rather large Euclidean

action. Choosing a smaller value for the lattice spacing increases these barriers, until standard

HMC simulation algorithms are not anymore able to frequently traverse these barriers. Then the

simulation gets stuck in a certain topological sector for a rather long time and computed observables

contain corresponding systematic errors (cf. e.g. [1] and references therein). When using overlap

fermions, topology freezing is even observed at rather coarse lattice spacings [2].

A possible solution to these problems is to restrict computations to a single topological sector,

either by sorting the generated gauge link configurations with respect to their topological charge or

by directly employing so-called topology fixing actions (cf. e.g. [3, 4, 5]). In a second step system-

atic effects due to topology fixing need to be removed by suitable extrapolations. Corresponding

expressions have been derived [6, 7] and tested in simple models, i.e. in the Schwinger model [8]

and in quantum mechanics [9].

In this work we explore computations at fixed topology in the Schwinger model. In contrast

to [8], we use a computationally much cheaper lattice discretization of fermions (Wilson fermions

instead of overlap fermions), which allows, to generate lattice results for many different topological

sectors and spacetime volumes. In addition to the pseudoscalar meson mass (the “pion mass”) we

also study the static potential.

2. The Schwinger model with N f = 2 flavors of fermions

2.1 The Schwinger model in the continuum

The Schwinger model describes 2-dimensional Euclidean quantum electrodynamics:

L (ψ , ψ̄ ,A) =
N f

∑
f=1

ψ̄( f )
(

γµ(∂µ + igAµ)+m
)

ψ( f )+
1

4
FµνFµν . (2.1)

It is a well known toy model for QCD, since it shares several interesting features with QCD. For

example the U(1) gauge theory in two spacetime dimensions allows for topologically non-trivial

field configurations, which are similar to instantons in 4-dimensional Yang-Mills theory. The cor-

responding topological charge is given by

Q =
1

π

∫

d2xεµνFµν . (2.2)

Moreover, for N f = 2 its low lying energy eigenstates contain a rather light iso-triplet, which are

quasi Nambu-Goldstone bosons and, therefore, can be seen as the pions of this model. Finally, the

model provides fermion confinement.

2.2 The Schwinger model on the lattice

We study the Schwinger model (2.1) on a periodic spacetime lattice with N2
L lattice sites cor-

responding to a spacetime extension of L = NLa (a is the lattice spacing) and a spacetime volume
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V = L2. We use N f = 2 flavors of Wilson fermions and the Wilson plaquette gauge action. As usual

all dimensionful quantities are expressed in units of a and denoted by ˆ, e.g. ĝ = ga and m̂ = ma.

One can approach the continuum limit by increasing NL, while keeping the dimensionless

ratios gL = ĝNL and MπL= M̂πNL fixed (Mπ denotes the mass of the aforementioned quasi Nambu-

Goldstone bosons, i.e. the pion mass). This requires to decrease both ĝ and M̂π proportional to

1/NL (for the latter m̂ has to be adjusted appropriately). It is also common to use the dimensionless

inverse squared coupling constant β = 1/ĝ2.

We use the geometric definition of topological charge on the lattice,

Q =
1

2π ∑
P

φ(P) (2.3)

[11, 12], where ∑P denotes the sum over all plaquettes P = eiφ(P) with −π < φ(P) ≤ +π . With

this definition Q ∈ Z for any given gauge link configuration.

We performed simulations at various values of β , m̂ and NL using a Hybrid Monte Carlo

(HMC) algorithm with multiple timescale integration and mass preconditioning [13]. In Figure 1

the probability for a transition to another topological sector per HMC trajectory is plotted versus

ĝ = 1/
√

β and m̂/ĝ = m̂
√

β , while gL = ĝNL = NL/
√

β = 24/
√

5 is kept constant. ĝ is propor-

tional to the lattice spacing a. m̂/ĝ is proportional to m̂/a and, therefore, proportional to m, the

bare quark mass in physical units. As expected there are frequent changes of the topological sector

at large values of the lattice spacing a (large values of ĝ), while at small values of a (small values

of ĝ) topology freezing is observed. The dependence of the probability for a transition on the bare

quark mass m̂/ĝ is rather weak.
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Figure 1: the probability for a transition to another topological sector per HMC trajectory as a function of

ĝ = 1/
√

β and m̂/ĝ = m̂
√

β .
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3. Physical hadron masses from computations at fixed topology

3.1 Basic principle

The temporal correlation function of a hadron creation operator O at fixed topological charge

Q and finite spacetime volume V is

CQ,V (t) =
1

ZQ,V

∫

Dψ Dψ̄

∫

DAδQ,Q[A]O
†(t)O(0)e−S[ψ ,ψ̄ ,A] ,

ZQ,V =
∫

Dψ Dψ̄

∫

DAδQ,Q[A]e
−SE [ψ ,ψ̄,A]. (3.1)

For sufficiently large V one can use a saddle point approximation and expand the correlation func-

tion according to

CQ,V (t) = AQ,V e−MQ,V t (3.2)

MQ,V = M(0)+
M′′(0)
2χtV

(

1− Q2

χtV

)

+O(1/V 2) (3.3)

[6, 7], where the expansion is in the three parameters M′′(0)t/χtV , 1/χtV and Q2/χtV . MQ,V is

the mass of the hadron excited by O at fixed topological charge Q and finite spacetime volume

V , M(θ) is the hadron mass in a θ -vacuum at infinite V (cf. e.g. [14]), M(0) = M(θ = 0) is the

physical hadron mass (i.e. the hadron mass at unfixed topology), M′′(0) = d2M(θ)/dθ2|θ=0 and

χt denotes the topological susceptibility.

To determine physical hadron masses (i.e. hadron masses at unfixed topology) from fixed

topology computations we use a method, which has been proposed in [6] and tested in [8, 9]:

1. Perform simulations at fixed topology for different topological charges Q and spacetime

volumes V , for which the expansion (3.2) and (3.3) is a good approximation, i.e. where

M′′(0)t/χtV , 1/χtV and Q2/χtV are sufficiently small. Determine MQ,V using (3.2) for each

simulation.

2. Determine the physical hadron mass M(0) (the hadron mass at unfixed topology and infinite

spacetime volume), M′′(0) and χt by fitting (3.3) to the masses MQ,V obtained in step 1.

3.2 Numerical results

The hadron masses we investigate in the following are the pion mass Mπ and the static potential

Vq̄q(r) (the ground state energy of a static quark antiquark pair at separation r). Suitable hadron

creation operators are

Oπ = ∑
x

ψ̄(u)(x)γ1ψ(d)(x) (3.4)

(∑x denotes a sum over space and u and d label the two degenerate fermion flavors) and

Oq̄q = q̄(x1)U(x1,x2)q(x2) , r = |x1 − x2|, (3.5)

(q̄ and q represent scalar static color charges and U(x1,x2) is the product of spatial links connecting

x1 and x2).
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We obtain hadron masses M̂Q,V ≡ M̂π,Q,V and M̂Q,V ≡ V̂q̄q,Q,V (r) at fixed topology by first

determining the topological charge Q on each gauge link configuration according to (2.3). Then

we perform independent computations of the pion mass and the static potential using only gauge

link configuration with the same absolute value of Q.

In Figure 2 lattice results for M̂Q,V ≡ M̂π,Q,V for β = 3.0, NL = 20, . . . ,52 and Q = 0,1, . . . ,5

are plotted against 1/V̂ = 1/N2
L . These results have been used as input for a single χ2 minimiz-

ing fit with (3.3). As discussed above (3.3) is an expansion in M′′(0)t/χtV , 1/χtV and Q2/χtV .

Therefore, only fixed topology pion masses M̂Q,V ≡ M̂π,Q,V with sufficiently small values of 1/χtV

and Q2/χtV should be included in the fit. In Figure 2 we require 1/χtV,Q
2/χtV <∼1.0 (as indicated

by the black boxes)1. The fit is of acceptable quality and yields consistent results, χ2/dof = 0.54,

M̂(0) = M̂π = 0.2659(3), which indicates that 1/χtV,Q
2/χtV <∼1.0 is a reasonable constraint. Since

M̂′′(0) is determined by the fit, one can only check a posteriori, whether also M′′(0)t/χtV is small,

which is the case (|M′′(0)|t/χtV <∼0.09). For β = 3.0 there are sufficiently many transitions between
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Figure 2: lattice results M̂Q,V ≡ M̂π ,Q,V plotted against 1/V̂ for β = 3.0 and the χ2 minimizing fit with (3.3);

the lattice results M̂Q,V entering the fit are required to fulfill 1/χtV,Q
2/χtV

<∼ 1.0.

different topological sectors, to safely determine M̂π in the conventional way, i.e. by computing the

corresponding temporal correlation function on all available gauge link configurations (i.e. as an

average over all topological sectors) at a single sufficiently large V . The result, M̂π = 0.2663(3) (at

V̂ = 522), agrees with the above results obtained by fixing topology within statistical errors.

We performed similar determinations of M̂π at fixed topology also at other values of β and m̂,

e.g. at β = 4.0 (which corresponds to a lattice spacing smaller by the factor
√

4/3 ≈ 1.15 compared

1The topological susceptibility can be obtained numerically according to χ̂t = 〈Q2〉/V̂ .
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to β = 3.0) and m̂ = −0.03 (a pion masses larger by the factor ≈ 1.19 compared to β = 3.0 and

m̂ = −0.07). As before we obtain accurate results, which are in agreement with conventional

computations at unfixed topology.

In exactly the same way we successfully determined the static potential at fixed topology. An

exemplary plot (analogous to Figure 2) corresponding to β = 3.0, m̂ = −0.07 and r = a is shown

in Figure 3.
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Figure 3: lattice results M̂Q,V ≡ V̂q̄q,Q,V (a) plotted against 1/V̂ for β = 3.0 and the χ2 minimizing fit with

(3.3); the lattice results M̂Q,V entering the fit are required to fulfill 1/χtV,Q
2/χtV

<∼ 0.5.

Further numerical results are collected in Table 1. Note that hadron masses (i.e. the pion mass

and the static potential) can be determined rather precisely (uncertainty ≪ 1%), while there is a

rather large error associated with the topological susceptibility (uncertainty up to ≈ 20%). This

is in agreement with similar existing investigations in the Schwinger model [8] and in quantum

mechanics [9].

4. Conclusions

We successfully determined the pion mass and the static potential in the Schwinger model

from computations at fixed topology using a method proposed and equations derived in [6]. The

generalization of the method to QCD seems to be straightforward. There it might be used to cir-

cumvent problems associated with topology freezing expected at small values of the lattice spacing

or when using e.g. overlap fermions.
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observable β m̂ M̂ (fixed top.) M̂ (conv.) χ̂t (fixed top.) χ̂t (〈Q2〉/V̂ )

Mπ

3.0 -0.07

0.2659(3) 0.2663(3) 0.00292(54)

0.00454(6)VQQ̄(1) 0.1708(1) 0.17108(5) 0.0051(13)

VQQ̄(2) 0.2914(3) 0.2927(2) 0.00247(20)

Mπ

4.0 -0.03

0.2743(6) 0.2743(3) 0.00228(39)

0.00353(14)VQQ̄(1) 0.12552(7) 0.12551(4) 0.00313(26)

VQQ̄(2) 0.2250(2) 0.2247(2) 0.00329(15)

Table 1: a collection of some numerical results (fixed top.: results obtained by fixed topology computations;

conv.: results obtained in the conventional way, i.e. by computations without topology fixing; 〈Q2〉/V̂ : the

topological susceptibility obtained via 〈Q2〉/V̂ ).
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