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We calculate the kaon mixing B-parameters for operators arising generically in theories of physics
beyond the standard model. We use HYP-smeared improved staggered fermions on the N f = 2+1
MILC asqtad lattices. Operator matching is done perturbatively at one-loop order. Chiral extrap-
olations are done using “golden combinations” in which one-loop chiral logarithms are absent.
For the combined sea-quark mass and continuum extrapolation, we use three lattice spacings:
a ≈ 0.045, 0.06 and 0.09 fm. Our results have a total error of 5-6%, which is dominated by the
systematic error from matching and continuum extrapolation. For two of the BSM B-parameters,
we agree with results obtained using domain-wall and twisted-mass dynamical fermions, but we
disagree by (4−5)σ for the other two.
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1. Introduction

Kaon mixing, and in particular the CP-violating component εK , can provide powerful con-
straints on theories of physics beyond the standard model (BSM). BSM theories lead to contribu-
tions to the mixing amplitude which add to that from the standard model (SM). Given that we now
know the SM contributions to εK quite accurately, there is little room for BSM additions.

In order to determine the constraints on the parameters of BSM models, one needs to know
the matrix elements of the local four-fermion ∆S = 2 operators that arise when new, BSM heavy
particles are integrated out. It turns out that, in addition to the operator appearing in the short-
distance component of the SM contribution (which has a “left-left” Dirac structure and whose
matrix element is parametrized by BK), BSM theories lead to four other operators. Here we present
our results for the matrix elements of all five operators, and compare with those of other recent
calculations [1, 2]. More details of our results are given in Ref. [3].

2. Methodology and Results

We adopt the operator basis used in Ref. [4],

Q1 = [s̄a
γµ(1− γ5)da][s̄b

γµ(1− γ5)db] ,

Q2 = [s̄a(1− γ5)da][s̄b(1− γ5)db] ,

Q3 = [s̄a
σµν(1− γ5)da][s̄b

σµν(1− γ5)db] ,

Q4 = [s̄a(1− γ5)da][s̄b(1+ γ5)db] ,

Q5 = [s̄a
γµ(1− γ5)da][s̄b

γµ(1+ γ5)db] ,

(2.1)

where a, b are color indices and σµν = [γµ ,γν ]/2. Q1 is the SM operator while Q2−5 are the BSM
operators. Matrix elements of the latter are parametrized as

Bi(µ) =
〈K0|Qi(µ)|K0〉

Ni〈K0|sγ5d(µ)|0〉〈0|s̄γ5d(µ)|K0〉
(N2, N3, N4, N5) = (5/3, 4, −2, 4/3) .

(2.2)

The basis (2.1) is that in which the the two-loop anomalous dimensions (which we use for renor-
malization group running) are known [4]. It differs from the “SUSY” basis of Ref. [5] (which has
been used in previous lattice calculations of the BSM matrix elements), although the two bases are
simply related, as discussed below.

Table 1 shows the lattices used in this work. They are generated using N f = 2+ 1 flavors of
asqtad staggered quarks [6]. For valence quarks, we use HYP-smeared staggered fermions [7].

The calculation of the BSM B-parameters follows closely the methodology used in our BK

calculation [8, 9]. The lattice operators are matched, at one-loop order, to continuum operators
defined in the renormalization scheme of Ref. [4]. This scheme differs slightly from that used in the
continuum-lattice matching calculation of Ref. [10], requiring an additional (continuum) matching
factor which we have calculated. The matching on each lattice is done at a renormalization scale
µ = 1/a, with results subsequently run to a common final scale using the continuum two-loop
anomalous dimensions.
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Table 1: MILC lattices used in this calculation. Here “ens” is the number of gauge configurations, “meas”
is the number of measurements per configuration, and ID identifies the ensemble.

a (fm) am` / ams size ens × meas ID
0.09 0.0062 / 0.031 283×96 995×9 F1
0.09 0.0093 / 0.031 283×96 949×9 F2
0.09 0.0031 / 0.031 403×96 959×9 F3
0.09 0.0124 / 0.031 283×96 1995×9 F4
0.09 0.00465 / 0.031 323×96 651×9 F5
0.06 0.0036 / 0.018 483×144 749×9 S1
0.06 0.0072 / 0.018 483×144 593×9 S2
0.06 0.0025 / 0.018 563×144 799×9 S3
0.06 0.0054 / 0.018 483×144 582×9 S4
0.045 0.0028 / 0.014 643×192 747×1 U1

We use ten different valence quark masses, amx,y = ams× n
10 (with n = 1− 10), where mx

and my are the valence d and s quark masses, respectively, while ms (given in Table 1) lies close
to the physical strange quark mass. Thus our valence pion masses run down almost to 200 MeV.
Results are extrapolated to physical light-quark masses using SU(2) staggered chiral perturbation
theory (SChPT), taking the lightest four quark masses for mx and the heaviest three for my. Thus
we remain in the regime, mx� my ∼ ms, where we expect SU(2) ChPT to be applicable.

As an example of the quality of our data, we show, in Fig. 1, the plateaus that we find for B2 on
the three lattice spacings. This is for our most kaon-like choice of valence quark masses. We use
U(1) noise sources to create kaons with a fixed separation, and place the lattice operators between
them. From plots such as these, as well as those for kaon correlators, we determine how far from
the sources we must work to avoid excited-state contamination. We then fit to a constant.

Generalizing a proposal of Ref. [11], Ref. [12] suggested that chiral extrapolations of BSM
B-parameters would be simpler if one uses the following “golden combinations”:

G23 =
B2

B3
, G45 =

B4

B5
, G24 = B2 ·B4, G21 =

B2

BK
. (2.3)

This is because the leading chiral logarithms, which appear at next-to-leading order (NLO) in
ChPT, cancel in these quantities (if one uses SU(2) ChPT). This observation is particularly impor-
tant for staggered fermions, since chiral logarithms introduce taste-breaking effects which normally
have to be corrected for. Hence, we perform the chiral and continuum extrapolations using the
golden combinations, as well as BK , and obtain our final results by inverting Eq. (2.3). We obtain
consistent results by directly extrapolating the B-parameters themselves using the SU(2) SChPT
forms of Ref. [12], following the analysis method previously followed for BK [8, 9].

To extrapolate in mx, we fit the golden combinations to

Gi(X-fit) = c1 + c2X + c3X2 + c4X2 ln2 X + c5X2 lnX + c6X3 , (2.4)
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Figure 1: B2(µ = 1/a) as a function of T , the distance between the left-hand kaon source and the op-
erator. (Blue) diamonds, (purple) octagons and (brown) squares are from the F1, S1, and U1 ensembles,
respectively, with (mx, my) = (ms/10, ms).

where X ≡ XP/Λ2
χ with XP = M2

π:xx̄, and Λχ = 1GeV, and generic NNLO continuum chiral loga-
rithms are included. We call this the X-fit. To fit our four data points to this form, we constrain
the coefficients c4−6 with Bayesian priors: ci = 0± 1. Systematic errors in X-fits are estimated
by doubling the widths of these priors, and by comparing to the results of the eigenmode shift
method [13]. The X-fits for BK do involve NLO chiral logarithms, and we follow the same proce-
dure as in Refs. [8, 9].

The extrapolation in the valence strange mass my is done using a linear function of YP = M2
π:yȳ,

with a quadratic fit used to estimate a systematic error. We call this the Y-fit. In Fig. 2, we show X-
and Y-fits for G23, illustrating the mild dependence on the valence quark masses.

After these valence chiral extrapolations, we have, for each ensemble, results for the the Gi

(and BK) at scale µ = 1/a. We next evolve these to a common scale, either 2GeV or 3GeV, using
the two-loop anomalous dimensions of Ref. [4]. These results can then be extrapolated to the
continuum and to physical sea-quark masses (with the dependence on the latter being analytic at
NLO). We do a simultaneous extrapolation using

f1 = d1 +d2(aΛQ)
2 +d3LP/Λ

2
χ +d4SP/Λ

2
χ , (2.5)

where LP and SP are squared masses of taste-ξ5 pions composed of two light sea quarks and two
strange sea quarks, respectively. Discretization errors are scaled with ΛQ = 300MeV, so that for
a typical discretization error one would have d2 ∼ O(1). However, we find that d2 ∼ 2−7 for the
golden combinations, indicating enhanced lattice artifacts. The artifacts in BK are much smaller.
These results are illustrated in Fig. 3. The extrapolation fits have χ2/dof in the range 1.6−2.7.
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Figure 2: (a) X-fit and (b) Y-fit of G23(µ = 1/a) on F1 ensemble. In the X-fit, my is fixed at amy = 0.03.
The red diamond represents the extrapolated physical point in both plots.
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Figure 3: Examples of simultaneous sea-quark mass and continuum extrapolations. Red circles denote
extrapolated results.

To estimate the systematic uncertainty in the continuum extrapolation, we compare the results
of fitting to Eq. (2.5) with those obtained using the following fitting function, which includes higher
order terms in a2 and αs [which here means αMS

s (1/a)]:

f2 = f1 +d5(aΛQ)
2
αs +d6α

2
s +d7(aΛQ)

4 . (2.6)

The difference, ∆ f12 = | f1− f2|, is about 5%, and is comparable with our estimate of the sys-
tematic error coming from the one-loop matching, which we estimate by α2

s (U1) = 4.4%. Since
Eq. (2.6) includes terms of α2

s , it also captures the systematic error from using one-loop pertur-
bative matching. Hence, we quote the larger of ∆ f12 and α2

s (U1) in our final error budget for the
matching/continuum extrapolation error.

In Table 2, we show our final results for the B-parameters evaluated at µ = 2GeV and 3GeV.
Total errors are 5−6%, and are dominated the systematic errors, as can be seen from the error bud-
get given in Table 3. Further details concerning error estimates are explained in Ref. [3]. Overall,
we see that the matching/continuum extrapolation dominates.

5



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
4
7
3

BSM B-parameters with Staggered Fermions Boram Yoon

Table 2: Results for the Bi at µ = 2GeV and 3GeV.

µ = 2GeV µ = 3GeV
BK 0.537 (7)(24) 0.519 (7)(23)
B2 0.620 (4)(31) 0.549 (3)(28)
B3 0.433 (3)(19) 0.390 (2)(17)
B4 1.081 (6)(48) 1.033 (6)(46)
B5 0.853 (6)(49) 0.855 (6)(43)

Table 3: Error budget (in percent) for the Bi(2 GeV).

source of error BK B2 B3 B4 B5

statistics 1.37 0.64 0.63 0.60 0.66{
matching
cont-extrap.

}
4.40 4.95 4.40 4.40 5.69

X-fit (F1) 0.10 0.10 0.10 0.12 0.12
Y-fit (F1) 0.62 0.12 0.19 0.22 0.16
finite volume 0.50 0.50 0.50 0.50 0.50
r1 = 0.3117(22) fm 0.34 0.18 0.17 0.05 0.02
fπ = 132 vs. 124MeV (F1) 0.46 0.46 0.46 0.46 0.46

3. Comparisons and Outlook

As noted above, there are two previous calculations of the BSM B-parameters using dynamical
quarks: one using N f = 2+ 1 flavors of domain-wall fermions at a single lattice spacing [1], the
other using N f = 2 flavors of twisted-mass fermions at three lattice spacings [2]. The results from
these two calculations are consistent. We pick those of Ref. [1] for a detailed comparison with our
results, since then both calculations use the same number of dynamical flavors.

We begin by noting that the results for BK in all three calculations are consistent (within the
small errors). For the BSM B-parameters, Ref. [1] finds, at µ = 3GeV, that BSUSY

2−5 = 0.43(5),
0.75(9), 0.69(7) and 0.47(6), respectively. These are calculated in the SUSY basis, in which
BSUSY

3 = (5B2− 3B3)/2, while the other three B-parameters are the same. Our results convert
(at µ = 3GeV) to BSUSY

3 = 0.79(3). Using this, and Table 2, we see that, while B2 and B3 are
consistent, B4 and B5 are not. Our results are 1.5 and 1.8 times larger, respectively, a difference of
4−5σ .

At the present time, we do not know the origin of this difference. We have ruled out the
simplest possibilities, such as using incorrect continuum anomalous dimensions, by various cross
checks with results in the literature. It thus seems that systematic errors in one or both calculations
are being underestimated, the most likely culprit being the estimate of the truncation error in match-
ing. This enters at the two-loop level in both calculations, since both are ultimately connected to a
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continuum scheme by one-loop matching.
We think it is important to resolve this disagreement, not only because the matrix elements

are wanted for phenomenology, but also because it may impact the reliability of other calculations.
One way to proceed is for all calculations to use a common (S)MOM scheme and non-perturbative
renormalization and running. This avoids the matching to the continuum. We are working in this
direction. Another idea is for the other calculations to do the chiral extrapolations using the golden
combinations described above.
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