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1. Beyond the Standard Model - Super symmetry

The Standard Model provides a very successful descripfiefeotroweak and strong interactions.
However, cosmological observations uncover discreparioien the theoretical prediction, i.e. the
matter to antimatter ratio or dark matter. These obsematmint to physics beyond the Standard
Model. Supersymmetry, an extension of the Poincaré symmudtspacetime transformations,
provides a possible extension of the Standard model. Thebedgof supercharges closes on the
energy-momentum,

{Qa,Qp} = 2Py (1.1)

On a discrete spacetime lattice, infinitesimal translationrotations are not possible and hence
supersymmetry is inevitably broken at finite lattice spgcim order to restore supersymmetry in
the continuum limit, all relevant susy-breaking operatweed to be controlled. A recent approach
[1] tries to implement a part of the supersymmetry exactlffanlattice, which may guarantee the
correct continuum limit. However, we will show that this apach fails for the supersymmetric
nonlinear Sigma Model and we then proceed to argue that aifiimgt of susy-breaking operators
leads to the expected continuum limit. Furthermore we shway for .4~ = 2 supersymmetric
Yang-Mills theory a supersymmetric continuum limit is pibss by finetuning a single parameter.

2. Supersymmetric O(3) nonlinear o model

The supersymmetric extension of the bosonic O(3) nonlirgdgma model is formulated most
elegantly in superspace, where the usual constraint iseaiol the superfield. To obtain the action
in regular spacetime, we expand the superfield and integrdtine auxiliary field with the result

SZz—éz/dZX (0¥ndun+igdy +z(Pw)?), wheren’=1, ny=0. (2.1)

In order to simulate the theory on the lattice, it is necessarewrite the contraints for the com-
ponent fields. We choose a stereographic projection of tperald which resolves the field
constraints explicitly [2]. In addition to supersymmettiie classical action is invariant under
SO(3)-rotation of the fields. Furthermore, a disct8gechiral symmetry is broken spontaneously
on the lattice for arbitrary coupling and is connected todiieamical generation of mass.
Supersymmetry relates the bosonic and fermionic compseraihe superfields,

ani=ieyr, YT =dne+ L(Py)nie. (2.2)

Since the target spa& is Kahler, there exists an’ = 2-supersymmetric extension of the model.
The second susy transformation reads

din= nxiew, &Y =-nx(dne)? —ieY x Y°. (2.3)

The supersymmetries are generated by the supercharges:

Q, :/ia“niy“yotpi, Qz/—ifijkniﬁunjV“VOLﬂk- (2.4)
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Figure 1: Left panel: measurement of the order paramétey) in the Q-exact ensemble for different cou-
pling constants and lattice volumeSenter panel: phase transition of the renormalized chiral condensate
at the critical finetuning parametgg. Right panel: Z,-symmetric histogram of the chiral condensate.

2.1 Implementing exact supersymmetry and O(3) symmetry - a no-go theorem

The authors of [3] construct a nilpotent supercha@fe= 0, such that the action may be written
as S= QA. By implementing this relation exactly on the lattice, paftthe supersymmetry is
respected and the supersymmetric continuum limit may beocapped without the need for fine-
tuning. However, thisQ-exact action" breaks the O(3) symmetry explicitly at artfida spacing.
Mermin-Wagner's theorem dictates that the O(3) symmetnnoabe broken spontaneously and
one therefore needs to take care in restoring the symmetheinontinuum limit. Alas, by simu-
lating the action of [3] we find that the order parameter of @) symmetry does not vanish in
the infinite volume limit, as is shown in Fig. 1 (left panelhdathe resulting continuum limit does
not belong to the supersymmetric O(3) NLSM, therefore reindethe Q-exact discretisation in-
valid [2]. This failure raises the question whether it isgibke at all to find a lattice formulation of
this model that preserves both the O(3) symmetry as well dopaupersymmetry. We will argue
that this is indeed not possible. A general symmetry of thelehoeeds to leave invariant both
the action as well as the constraints. The first susy tramsfoon in eq. 2.2 breaks the constraint
ny = 0 at finite lattice spacing,

& (el = iggp + ZnXD)‘ZanysB + 5 (Qp)nze” = ELnXD)‘{anyEB. (2.5)
ye ye
The second susy transformation always respects the cmstbg use of vector identities,

31 () = gLnx- (nx x DEPnyel) =0, & (ng) = 2ny(ny x i€yk) =0. (2.6)
ye
However, the second susy transformation by itself cannat bgmmetry on the lattice since the
susy algebra cannot be closed (eq. 1.1) and any nontriviabt@tion of the susy transforma-
tions § and g is not compatible with the constraints. The approach in {8jtains an additional
topological charge, which however does not alter the sypareetry transformations and thus the
problem persists. One may further introduce nonlocal aution terms liKey y , w Cuyaw P Py Wz P
instead of(yx)*. But none of such terms is able to cure the problem at hand.laEheemaining
possibility is the introduction of terms that vanish in thentnuum limit, but render the lattice
action invariant unde®'' for finite lattice spacing. Once again, no appropriate tearesavailable.
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Figure?2: Left panel: finetuningk towards the critical valug; reveals a possible mass degener&anter
panel: bosonic and fermionic mass gap for Wilson fermiong at k.. Right panel: keeping the box size
mgL fixed, the simple Ward identity is restored in the continuimitl

We thus conclude that no discretization of the O(3)-NLSMexivhich maintains O(3)-invariance
and exact supersymmetry.

2.2 Finetuning the supersymmetric continuum limit

In order to discretize the fermionic degrees of freedom,eptace the continuum Dirac operator by
the Wilson lattice operator which suppresses unwantedideraioublers. While being ultralocal,
the Wilson operator introduces an explicit breaking of @hsiymmetry which should be cancelled
by finetuning the hopping parameter In figure 1 (center panel) we show the first order phase
transition of the renormalized chiral condensate whichksdhe critical valuex.. At K = K,

we can cleary distinguish the two minima of the chiral corsdéa in the right panel of figure
1. Supersymmetry predicts that the masses of the elememb@gnic and fermionic excitations
coincide in the continuum limit. Adjusting the hopping paeter as in figure 2 (left panel), we
see that the bosonic mass stays constant when wekyawhereas the fermionic mass shows
a linear dependence in a large range. In the vicinitkgfthis linear dependence ceases and
the fermionic mass does not go to zero but stays at the leviileobosonic mass, hinting at a
possible degeneracy. Using the finetuned ensemble in figgcerier panel) we find a residual
discrepancy of the masses for intermediate box smgels, which can however be attributed to
a thermal contribution to the mass gap. A similar behaviam be seen in the Wess-Zumino-
model [4] and we expect it to vanish for large box sizes. Th&oh@ action constitutes a simple
Ward identity for susy restorationSg) = %N, and we find that the relation is restored in the
continuum limit (see right panel of Fig. 2). Both the observmeasses and the Ward identity show
a restoration of supersymmetry whens finetuned.

3. A =1supersymmetric Yang-Millstheory in 4 dimensions
The on-shell action in four spacetime dimensions is give{bh§]
Sym :/d“xtr{—%FwF“"Jrlz)Ty“D“)\ +m)\_)\}, (3.1)

whereF,,, = d,A, — Ay —ig [ Ay, A | is the usual field strength tensor with dimensionless gauge
coupling constang. The gauge fieldh, and the Majorana spinor transforms under the adjoint
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representation of the gauge gro8g (N.). Form= 0 the action (3.1) is invariant undey” = 1
supersymmetry transformations

SA =iEyA , OA =i, F*e and 8A = —igz, FH, (3.2)

where € is an arbitrary constant Majorana spinor. The gluino mas® t@ introduces a soft
breaking of supersymmetry. The action (3.1) is invariarderra chiralJ (1) transformation (R-
symmetry) that is broken by the chiral anomaly to the digcsetogrouf(2N.). A non-vanishing
gluino condensaté)\)\> # 0 breaks the discrete symmetry further dowrZid\, ), leavingN, in-
equivalent ground states of the theory. Rar= 2, two degenerate ground states should exist, that
can be distinguished by the sign of the gluino condensatg ekpected that the theory possesses a
first order phase transition at vanishing renormalizednglumass, if the chiral symmetry is spon-
taneously broken [7]. In [5], Veneziano and Yankielowicgwed, that the only supersymmetry
breaking operator is related to a non-vanishing gluino eosdte. In order to restore supersym-
metry on the lattice, it is therefore sufficient to fine-tuhe theory to a massless gluino in the
continuum limit. Due to confinement, the gluino is not partteé physical spectrum, and it is not
possible to measure its mass directly. But the OZI rule (kmfnom QCD) relates the renormalized
gluino mass to the pion mass iag [ m? [8]. Very recently,.#” = 1 SYM theory in four dimen-
sions has been investigated with much effort on the latBeel?]. But so far the results for the
mass spectrum are not conclusive.

As in Yang-Mills theories, it is believed that in SYM theaienly colourless asymptotic states
exist and a mass gap is dynamically generated. Veneziandamidelowicz (VY) [5] and later
Farrar-Gabadadze-Schwetz (FGS) [13] proposed an eféelcigrangian, that leads to the particle
spectrum shown in Table 1. If supersymmetry is broken by mglmass term, the masses inside

multiplet | particle operator  spin mass SYM-name QCD-name
1 pseudoscalar boson  AgsA 0 5 a—n’ n'
VY 1 scalar boson %A 0 o a—fo fo
1 Majorana fermion  tF,,HYA 3 mgg  gluino-glueball -
1 scalar boson FHF, 0 05 0" -glueball 0 -glueball
FGS | 1 pseudoscalar boson RHVFyy 0 ~ 0 -glueball O - glueball
1 Majorana fermion  tF,,HYA 3 mg gluino - glueball -

Table 1: Particles of the Veneziano-Yankielowicz (VY) and Farrab@dadze-Schwetz (FGS) multiplet.

one multiplet are no longer degenerate and thgldeball should be the lightest particle.

4. ¢ = 2 supersymmetric Yang-Millstheory in 3 dimensions

Here we investigate the theory in a dimensional reducedorers three dimensions. The action
for this (euclidean)#” = 2 supersymmetric Yang-Mills theory is then giventby

1 1- 1 1- —
s :a/d3xtr{ZF.JF.J+§A yEDIA +5D19Di g~ é)\ySE[q;,)\ ] +m)\)\}. (4.1)

1\We consider only a gluino mass term to fine-tune the theangesive expect a scalar mass term to be small in the
continuum limit. Nevertheless we have to compare our resalthe effective scalar potential in [14].



Finetuning the continuum limit in low-dimensional supersymmetric theories Daniel Koerner

On a 16 x 32 lattice for Wilson fermions, for different values of theesall gauge coupling, the
critical hopping parametet; oz|(a) is determined such that the gluino becomes massless. 18 Fig.
(left panel) the square of the pion mass is showrafet 2.2. A linear fit to the gluino mass yields
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Figure 3: Gluino mass (square of the pion mass) on 4182 lattice fora = 2.2 (left panel). The black
lines represent a linear fit to the limit of a vanishing gluimass. The Renormalized chiral condensate
(center panel) and the chiral susceptibility (right paae shown foir = 2.2 anda = 2.6.

Kc 0z in Tab. 2. Due to the residual Wilson mass at a finite lattiGes, the chiral condensate is
renormalized aZen(a,K) = Z1 (Z(a,K) — Myes) = Z1Z(A, K) — ZoK — Z3, where it is assumed that
the residual Wilson mass is a linear functionkir(as it is the gluino mass). The renormalization
constantsZ;, Z, andZz are fixed such thafen(ar, K < K¢) = 1= —Zen(a,K > Kc). The critical
point obtained from the vanishing of the pion mass can be epegpto the critical point obtained
from the transition in the chiral condensate. Thereforehm ¢enter and right panel of Fig. 3
the chiral condensate and its susceptibility are shown aaaibn ofk, normalized to the critical
Kc,0zi(a) obtained before. For botin = 2.2 anda = 2.6, the deviations in the critical couplings are
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Figure 4: The bosonic action (left panel) is shown for= 2.2 anda = 2.6. The Histograms of the chiral
condensate in the center panel point to a first oder phassticamas a function of the renormalized gluino
mass. In the right panel the critical line is shown.

less than (b percent, see Tab. 2. In the left panel of Fig. 4 the bosoticrais plotted. Both curves

a | keoz Kc
22| 020921) 0.20974)
2.6 | 0.201672) 0.20232)

Table 2: k. obtained from the vanishing gluino mass (left) and from thiead condensate (right).

for a = 2.2 anda = 2.6 intersect each other almost exactly at the critical cogptibtained from
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the chiral condensate. The deviation from the theoretialesfor restoration of supersymmetry
at the intersection point is also aboub (ercent, indicating that a restoration of supersymmetry
on the lattice for this model is possible. As pointed out befthe chiral condensate as a function
of k should undergo a first order phase transition at the pointreviiee gluino mass vanishes.
Therefore, in Fig. 4 (center panel) histograms of the cluioaldensate fonr = 2.2 are shown in the
vicinity of the critical coupling. The double peak struauwand the coexistence of both phases at
the critical coupling clearly point to a first order transiti This indicates that chiral symmetry is
spontaneously broken in the theory and supersymmetry cegsbared in the continuum limit, i.e.
the soft breaking of supersymmetry due to the Wilson mas®eaesmoved by fine-tuning the bare
gluino mass. In order to determine the critical line in fhek )-plane, the above sketched analysis
is performed for different values of the gauge coupling amdifferent lattices. The results for two
different lattices 8 x 16 and 18 x 32 are shown in Fig. 4 (right panel).

5. Conclusions and Outlook

In the first part we have shown that it is not possible to obtadgliscretisation for the O(3) NLSM
that preserves both O(3) symmetry and part of supersymnoetrihe lattice. Our formulation
incorporates the O(3) symmetry exactly but breaks superstny. We argued that a finetuning of
the hopping parameter is sufficient to cancel the expligaking of chiral symmetry.

For .4+ = 2 Super-Yang-Mills theory in three dimensions we showedieify for the gauge
group SJ(2) that it is possible to perform a supersymmetric continuumitlby finetuning the
theory to a vanishing renormalized gluino mass. Our nextiaio investigate the spectrum of
bound states as predicted by the effective lagrangian. Mewnvihis is difficult due to the involved
disconnected correlation functions which typically shovweay low signal-to-noise ratio.
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